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Preface

A long time ago, in a datacenter far, far away, an ancient group of powerful
beings known as “sysadmins” used to deploy infrastructure manually. Every
server, every database, every load balancer, and every bit of network
configuration was created and managed by hand. It was a dark and fearful
age: fear of downtime, fear of accidental misconfiguration, fear of slow and
fragile deployments, and fear of what would happen if the sysadmins fell to
the dark side (i.e., took a vacation). The good news is that thanks to the
DevOps movement, there is now a better way to do things: Terraform.

Terraform is an open source tool created by HashiCorp that allows you to
define your infrastructure as code using a simple, declarative language and
to deploy and manage that infrastructure across a variety of public cloud
providers (e.g., Amazon Web Services [AWS], Microsoft Azure, Google
Cloud Platform, DigitalOcean) and private cloud and virtualization
platforms (e.g., OpenStack, VMware) using a few commands. For example,
instead of manually clicking around a web page or running dozens of
commands, here is all the code it takes to configure a server on AWS:

provider "aws" {
  region = "us-east-2"
} 
 
resource "aws_instance" "example" {
  ami           = "ami-0fb653ca2d3203ac1"
  instance_type = "t2.micro"
}

And to deploy it, you just run the following:

$ terraform init 
$ terraform apply

https://www.terraform.io/


Thanks to its simplicity and power, Terraform has emerged as a key player
in the DevOps world. It allows you to replace the tedious, fragile, and
manual parts of infrastructure management with a solid, automated
foundation upon which you can build all your other DevOps practices (e.g.,
automated testing, Continuous Integration, Continuous Delivery) and
tooling (e.g., Docker, Chef, Puppet).

This book is the fastest way to get up and running with Terraform.

You’ll go from deploying the most basic “Hello, World” Terraform example
(in fact, you just saw it!) all the way up to running a full tech stack (virtual
servers, Kubernetes clusters, Docker containers, load balancers, databases)
capable of supporting a large amount of traffic and a large team of
developers—all in the span of just a few chapters. This is a hands-on
tutorial that not only teaches you DevOps and infrastructure as code (IaC)
principles but also walks you through dozens of code examples that you can
try at home, so make sure you have your computer handy.

By the time you’re done, you’ll be ready to use Terraform in the real world.

Who Should Read This Book
This book is for anyone responsible for the code after it has been written.
That includes sysadmins, operations engineers, release engineers, site
reliability engineers, DevOps engineers, infrastructure developers, full-
stack developers, engineering managers, and CTOs. No matter what your
title is, if you’re the one managing infrastructure, deploying code,
configuring servers, scaling clusters, backing up data, monitoring apps, and
responding to alerts at 3 a.m., this book is for you.

Collectively, all of these tasks are usually referred to as operations. In the
past, it was common to find developers who knew how to write code but
did not understand operations; likewise, it was common to find sysadmins
who understood operations but did not know how to write code. You could
get away with that divide in the past, but in the modern world, as cloud
computing and the DevOps movement become ubiquitous, just about every



developer will need to learn operational skills, and every sysadmin will
need to learn coding skills.

This book does not assume that you’re already an expert coder or expert
sysadmin—a basic familiarity with programming, the command line, and
server-based software (e.g., websites) should suffice. Everything else you
need you’ll be able to pick up as you go, so that by the end of the book, you
will have a solid grasp of one of the most critical aspects of modern
development and operations: managing infrastructure as code.

In fact, you’ll learn not only how to manage infrastructure as code using
Terraform but also how this fits into the overall DevOps world. Here are
some of the questions you’ll be able to answer by the end of the book:

Why use IaC at all?

What are the differences between configuration management,
orchestration, provisioning, and server templating?

When should you use Terraform, Chef, Ansible, Puppet, Pulumi,
CloudFormation, Docker, Packer, or Kubernetes?

How does Terraform work, and how do you use it to manage your
infrastructure?

How do you create reusable Terraform modules?

How do you securely manage secrets when working with Terraform?

How do you use Terraform with multiple regions, accounts, and
clouds?

How do you write Terraform code that’s reliable enough for production
usage?

How do you test your Terraform code?

How do you make Terraform a part of your automated deployment
process?



What are the best practices for using Terraform as a team?

The only tools you need are a computer (Terraform runs on most operating
systems), an internet connection, and the desire to learn.

Why I Wrote This Book
Terraform is a powerful tool. It works with all popular cloud providers. It
uses a clean, simple language and has strong support for reuse, testing, and
versioning. It’s open source and has a friendly, active community. But there
is one area where it’s lacking: maturity.

Terraform has become wildly popular, but it’s still a relatively new
technology, and despite its popularity, it’s still difficult to find books, blog
posts, or experts to help you become proficient with the tool. The official
Terraform documentation does a good job of introducing the basic syntax
and features, but it includes little information on idiomatic patterns, best
practices, testing, reusability, or team workflows. It’s like trying to become
fluent in French by studying only the vocabulary but not any of the
grammar or idioms.

The reason I wrote this book is to help developers become fluent in
Terraform. I’ve been using Terraform for six out of the seven years it has
existed, mostly at my company, Gruntwork, where Terraform is one of the
core tools we’ve used to create a library of more than 300,000 lines of
reusable, battle-tested infrastructure code that’s used in production by
hundreds of companies. Writing and maintaining this much infrastructure
code over this many years and using it with so many different companies
and use cases has taught us a lot of hard lessons. My goal is to share these
lessons with you so that you can cut this lengthy process down and become
fluent in a matter of days.

Of course, you can’t become fluent just by reading. To become fluent in
French, you need to spend time conversing with native French speakers,
watching French TV shows, and listening to French music. To become
fluent in Terraform, you need to write real Terraform code, use it to manage

https://gruntwork.io/


real software, and deploy that software on real servers. Therefore, be ready
to read, write, and execute a lot of code.

What You Will Find in This Book
Here’s an outline of what the book covers:

Chapter 1, “Why Terraform”

How DevOps is transforming the way we run software; an overview of
infrastructure-as-code tools, including configuration management,
server templating, orchestration, and provisioning tools; the benefits of
infrastructure as code; a comparison of Terraform, Chef, Puppet,
Ansible, Pulumi, OpenStack Heat, and CloudFormation; how to
combine tools such as Terraform, Packer, Docker, Ansible, and
Kubernetes.

Chapter 2, “Getting Started with Terraform”

Installing Terraform; an overview of Terraform syntax; an overview of
the Terraform CLI tool; how to deploy a single server; how to deploy a
web server; how to deploy a cluster of web servers; how to deploy a
load balancer; how to clean up resources you’ve created.

Chapter 3, “How to Manage Terraform State”

What Terraform state is; how to store state so that multiple team
members can access it; how to lock state files to prevent race
conditions; how to isolate state files to limit the damage from errors;
how to use Terraform workspaces; a best-practices file and folder layout
for Terraform projects; how to use read-only state.

Chapter 4, “How to Create Reusable Infrastructure with Terraform
Modules”

What modules are; how to create a basic module; how to make a
module configurable with inputs and outputs; local values; versioned



modules; module gotchas; using modules to define reusable,
configurable pieces of infrastructure.

Chapter 5, “Terraform Tips and Tricks: Loops, If-Statements, Deployment,
and Gotchas”

Loops with the count parameter, for_each and for expressions,
and the for string directive; conditionals with the count parameter,
for_each and for expressions, and the if string directive; built-in
functions; zero-downtime deployment; common Terraform gotchas and
pitfalls, including count and for_each limitations, zero-downtime
deployment gotchas, how valid plans can fail, and how to refactor
Terraform code safely.

Chapter 6, “Managing Secrets with Terraform”

An introduction to secrets management; an overview of the different
types of secrets, different ways to store secrets, and different ways to
access secrets; a comparison of common secret management tools such
as HashiCorp Vault, AWS Secrets Manager, and Azure Key Vault; how
to manage secrets when working with providers, including
authentication via environment variables, IAM roles, and OIDC; how to
manage secrets when working with resources and data sources,
including how to use environment variables, encrypted files, and
centralized secret stores; how to securely handle state files and plan
files.

Chapter 7, “Working with Multiple Providers”

A closer look at how Terraform providers work, including how to install
them, how to control the version, and how to use them in your code;
how to use multiple copies of the same provider, including how to
deploy to multiple AWS regions, how to deploy to multiple AWS
accounts, and how to build reusable modules that can use multiple
providers; how to use multiple different providers together, including an



example of using Terraform to run a Kubernetes cluster (EKS) in AWS
and deploy Dockerized apps into the cluster.

Chapter 8, “Production-Grade Terraform Code”

Why DevOps projects always take longer than you expect; the
production-grade infrastructure checklist; how to build Terraform
modules for production; small modules; composable modules; testable
modules; releasable modules; Terraform Registry; variable validation;
versioning Terraform, Terraform providers, Terraform modules, and
Terragrunt; Terraform escape hatches.

Chapter 9, “How to Test Terraform Code”

Manual tests for Terraform code; sandbox environments and cleanup;
automated tests for Terraform code; Terratest; unit tests; integration
tests; end-to-end tests; dependency injection; running tests in parallel;
test stages; retries; the test pyramid; static analysis; plan testing; server
testing.

Chapter 10, “How to Use Terraform as a Team”

How to adopt Terraform as a team; how to convince your boss; a
workflow for deploying application code; a workflow for deploying
infrastructure code; version control; the golden rule of Terraform; code
reviews; coding guidelines; Terraform style; CI/CD for Terraform; the
deployment process.

Feel free to read the book from beginning to end or jump around to the
chapters that interest you the most. Note that the examples in each chapter
reference and build upon the examples from the previous chapters, so if you
skip around, use the open source code examples (as described in “Open
Source Code Examples”) to get your bearings. At the end of the book, in
the Appendix A, you’ll find a list of recommended reading where you can
learn more about Terraform, operations, IaC, and DevOps.



Changes from the Second Edition to the
Third Edition
The first edition of this book came out in 2017, the second edition came out
in 2019, and although it’s hard for me to believe it, I’m now working on the
third edition in 2022. Time flies. It’s remarkable how much has changed
over the years!

If you’ve read the second edition of the book and want to know what’s new,
or if you’re just curious to see how Terraform has evolved between 2019
and 2022, here are some of the highlights of what changed between the
second and third editions:

Hundreds of pages of updated content

The third edition of the book is about a hundred pages longer than the
second edition. I also estimate that roughly one-third to one-half of the
pages originally in the second edition were updated as well. Why so
much churn? Well, Terraform went through six major releases since the
second edition came out: 0.13, 0.14, 0.15, 1.0, 1.1, and 1.2. Moreover,
many Terraform providers went through major upgrades of their own,
including the AWS Provider, which was at version 2 when the second
edition came out and is now at version 4. Plus, the Terraform
community has seen massive growth over the last few years, which has
led to the emergence of many new best practices, tools, and modules.
I’ve tried to capture as much of this change as I could in the third
edition, adding two completely new chapters and making major updates
to all the existing chapters, as described next.

New provider functionality

Terraform has significantly improved how you work with providers. In
the third edition, I’ve added an entirely new chapter, Chapter 7, that
describes how to work with multiple providers: e.g., how to deploy into
multiple regions, multiple accounts, and multiple clouds. Also, by
popular demand, this chapter includes a brand-new set of examples
showing how to use Terraform, Kubernetes, Docker, AWS, and EKS to



run containerized apps. Finally, I’ve also updated all the other chapters
to highlight new provider features from the last several releases,
including the required_providers block introduced in Terraform
0.13, the lock file introduced in Terraform 0.14, and the
configuration_aliases parameter introduced in Terraform 0.15.

Better secrets management

When using Terraform code, you often have to deal with many types of
secrets: database passwords, API keys, cloud provider credentials, TLS
certificates, and so on. In the third edition, I added an entirely new
chapter, Chapter 6, dedicated to this topic, including a comparison of
common secret management tools, as well as lots of new example code
that shows a variety of techniques for securely using secrets with
Terraform, including environment variables, encrypted files, centralized
secret stores, IAM roles, OIDC, and more.

New module functionality

Terraform 0.13 added the ability to use count, for_each, and
depends_on on module blocks, making modules considerably more
powerful, flexible, and reusable. You can find examples of how to use
these new features in Chapters 5 and 7.

New validation functionality

In Chapter 8, I’ve added examples of how to use the validation
feature introduced in Terraform 0.13 to perform basic checks on
variables (such as enforcing minimum or maximum values) and the
precondition and postcondition features introduced in
Terraform 1.2 to perform basic checks on resources and data sources,
either before running apply (such as enforcing that the AMI a user
selected uses the x86_64 architecture) or after running apply (such as
checking that the EBS volume you’re using was successfully
encrypted). In Chapter 6, I show how to use the sensitive parameter



introduced in Terraform 0.14 and 0.15, which ensures that secrets won’t
be logged when you run plan or apply.

New refactoring functionality

Terraform 1.1 introduced the moved block, which provides a much
better way to handle certain types of refactoring, such as renaming a
resource. In the past, this type of refactoring required users to manually
run error-prone terraform state mv operations, whereas now, as
you’ll see in a new example in Chapter 5, this process can be fully
automated, making upgrades safer and more compatible.

More testing options

The tools available for automated testing of Terraform code continue to
improve. In Chapter 9, I’ve added example code and comparisons of
static analysis tools for Terraform, including tfsec, tflint,
terrascan, and the validate command; plan testing tools for
Terraform, including Terratest, OPA, and Sentinel; and server testing
tools, including inspec, serverspec, and goss. I also added a
comparison of all the testing approaches out there, so you can pick the
best ones for your use cases.

Improved stability

Terraform 1.0 was a big milestone for Terraform, not only signifying
that the tool had reached a certain level of maturity but also coming
with a number of compatibility promises. Namely, there is a promise
that all the 1.x releases will be backward compatible, so upgrading
between v1.x releases should no longer require changes to your code,
workflows, or state files. Terraform state files are now cross-compatible
with Terraform 0.14, 0.15, and all 1.x releases, and Terraform remote
state data sources are cross-compatible with Terraform 0.12.30, 0.13.6,
0.14.0, 0.15.0, and all 1.x releases. I’ve also updated Chapter 8 with
examples of how to better manage versioning of Terraform (including



using tfenv), Terragrunt (including using tgswitch), and Terraform
providers (including how to use the lock file).

Improved maturity

Terraform has been downloaded over 100 million times, has had over
1,500 open source contributors, and is in use at ~79% of Fortune 500
companies,  so it’s safe to say that the ecosystem has grown and
matured significantly over the last several years. There are now more
developers, providers, reusable modules, tools, plugins, classes, books,
and tutorials for Terraform than ever before. Moreover, HashiCorp, the
company that created Terraform, had its IPO (initial public offering) in
2021, so Terraform is no longer backed by a small startup but by a large,
stable, publicly traded company, for which Terraform is its biggest
business line.

Many other changes

There were many other changes along the way, including the launch of
Terraform Cloud (a web UI for using Terraform); the improved maturity
of popular community tools such as Terragrunt, Terratest, and tfenv; the
addition of many new provider features (including new ways to do zero-
downtime deployment, such as instance refresh, which I’ve added to
Chapter 5) and new functions (e.g., I added examples of how to use the
one function in Chapter 5 and the try function in Chapter 7); the
deprecation of many old features (e.g., template_file data source,
many aws_s3_bucket parameters, list and map, support for
external references on destroy provisioners); and much more.

Changes from the First Edition to the Second
Edition
Going back in time even further, the second edition of the book added
roughly 150 pages of new content on top of the first edition. Here is a
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summary of those changes, which also covers how Terraform changed
between 2017 and 2019:

Four major Terraform releases

Terraform was at version 0.8 when the first edition came out; between
then and the time of the second edition, Terraform had four major
releases, all the way up to version 0.12. These releases introduced some
amazing new functionality, as I’ll describe shortly, as well as a fair
amount of upgrade work for users!

Automated testing improvements

The tooling and practices for writing automated tests for Terraform code
evolved considerably between 2017 and 2019. In the second edition, I
added Chapter 9, a completely new chapter dedicated to testing,
covering topics such as unit tests, integration tests, end-to-end tests,
dependency injection, test parallelism, static analysis, and more.

Module improvements

The tooling and practices for creating Terraform modules also evolved
considerably. In the second edition, I added Chapter 8, a new chapter
that contains a guide to building reusable, battle-tested, production-
grade Terraform modules—the kind of modules you’d bet your
company on.

Workflow improvements

Chapter 10 was completely rewritten in the second edition to reflect the
changes in how teams integrate Terraform into their workflows,
including a detailed guide on how to take application code and
infrastructure code from development through testing and all the way to
production.

HCL2

2



Terraform 0.12 overhauled the underlying language from HCL to
HCL2. This included support for first-class expressions, rich type
constraints, lazily evaluated conditional expressions, support for null,
for_each and for expressions, dynamic inline blocks, and more. All
the code examples in the second edition of the book were updated to use
HCL2, and the new language features were covered extensively in
Chapters 5 and 8.

Terraform state revamp

Terraform 0.9 introduced backends as a first-class way to store and
share Terraform state, including built-in support for locking. Terraform
0.9 also introduced state environments as a way to manage deployments
across multiple environments. In Terraform 0.10, state environments
were replaced with Terraform workspaces. I cover all of these topics in
Chapter 3.

Terraform providers split

In Terraform 0.10, the core Terraform code was split up from the code
for all the providers (i.e., the code for AWS, GCP, Azure, etc.). This
allowed providers to be developed in their own repositories, at their
own cadence, with their own versioning. However, you now must run
terraform init to download the provider code every time you
start working with a new module, as discussed in Chapters 2 and 9.

Massive provider growth

From 2016 to 2019, Terraform grew from a handful of major cloud
providers (the usual suspects, such as AWS, GCP, and Azure) to more
than one hundred official providers and many more community
providers.  This means that you can now use Terraform to not only
manage many other types of clouds (e.g., there are now providers for
Alicloud, Oracle Cloud Infrastructure, VMware vSphere, and others)
but also to manage many other aspects of your world as code, including
version control systems with the GitHub, GitLab, and Bitbucket

3



providers; data stores with the MySQL, PostgreSQL, and InfluxDB
providers; monitoring and alerting systems with the Datadog, New
Relic, and Grafana providers; platform tools with the Kubernetes, Helm,
Heroku, Rundeck, and RightScale providers; and much more.
Moreover, each provider has much better coverage these days: AWS
now covers the majority of important AWS services and often adds
support for new services even before CloudFormation does!

Terraform Registry

HashiCorp launched the Terraform Registry in 2017, a UI that made it
easy to browse and consume open source, reusable Terraform modules
contributed by the community. In 2018, HashiCorp added the ability to
run a Private Terraform Registry within your own organization.
Terraform 0.11 added first-class syntax support for consuming modules
from a Terraform Registry. We look at the Registry in Chapter 8.

Better error handling

Terraform 0.9 updated state error handling: if there was an error writing
state to a remote backend, the state would be saved locally in an
errored.tfstate file. Terraform 0.12 completely overhauled error
handling, by catching errors earlier, showing clearer error messages, and
including the filepath, line number, and a code snippet in the error
message.

Many other changes

There were many other changes along the way, including the
introduction of local values (see “Module Locals”), new “escape
hatches” for having Terraform interact with the outside world via scripts
(see “Beyond Terraform Modules”), running plan as part of the
apply command, fixes for the create_before_destroy cycle
issues, major improvements to the count parameter so that it can
include references to data sources and resources, dozens of new built-in
functions, an overhaul in provider inheritance, and much more.

https://registry.terraform.io/


What You Won’t Find in This Book
This book is not meant to be an exhaustive reference manual for Terraform.
I do not cover all of the cloud providers, or all of the resources supported by
each cloud provider, or every available Terraform command. For these
nitty-gritty details, I refer you instead to the Terraform documentation.

The documentation contains many useful answers, but if you’re new to
Terraform, infrastructure as code, or operations, you won’t even know what
questions to ask. Therefore, this book is focused on what the documentation
does not cover: namely, how to go beyond introductory examples and use
Terraform in a real-world setting. My goal is to get you up and running
quickly by discussing why you might want to use Terraform in the first
place, how to fit it into your workflow, and what practices and patterns tend
to work best.

To demonstrate these patterns, I’ve included a number of code examples.
I’ve tried to make it as easy as possible for you to try these examples at
home by minimizing dependencies on any third parties. This is why almost
all the examples use just a single cloud provider, AWS, so that you need to
sign up only for a single third-party service (also, AWS offers a generous
free tier, so running the example code shouldn’t cost you much). This is
why the book and the example code do not cover or require HashiCorp’s
paid services, Terraform Cloud or Terraform Enterprise. And this is why
I’ve released all of the code examples as open source.

Open Source Code Examples
You can find all of the code samples in the book at the following URL:

https://github.com/brikis98/terraform-up-and-running-code

You might want to check out this repo before you begin reading so you can
follow along with all the examples on your own computer:

https://www.terraform.io/docs
https://github.com/brikis98/terraform-up-and-running-code


git clone https://github.com/brikis98/terraform-up-and-running-
code.git

The code examples in that repo are in the code folder, and they are
organized first by the tool or language (e.g., Terraform, Packer, OPA) and
then by chapter. The one exception is the Go code used for automated tests
in Chapter 9, which lives in the terraform folder to follow the examples,
modules, and test folder layout recommended in that chapter. Table P-1
shows a few examples of where to find different types of code examples in
the code samples repo.

Table P-1. Where to find different types of code examples in the
code samples repo

Type of code Chapter Folder to look at in the samples repo

Terraform Chapter 2 code/terraform/02-intro-to-terraform-syntax

Terraform Chapter 5 code/terraform/05-tips-and-tricks

Packer Chapter 1 code/packer/01-why-terraform

OPA Chapter 9 code/opa/09-testing-terraform-code

Go Chapter 9 code/terraform/09-testing-terraform-code/test

It’s worth noting that most of the examples show you what the code looks
like at the end of a chapter. If you want to maximize your learning, you’re
better off writing the code yourself, from scratch, and checking the
“official” solutions only at the very end.

You’ll begin writing code in Chapter 2, where you’ll learn how to use
Terraform to deploy a basic cluster of web servers from scratch. After that,
follow the instructions in each subsequent chapter on how to develop and
improve this web server cluster example. Make the changes as instructed,
try to write all the code yourself, and use the sample code in the GitHub
repo only as a way to check your work or get yourself unstuck.



A NOTE ABOUT VERSIONS
All of the examples in this book were tested against Terraform 1.x and
AWS Provider 4.x, which were the most recent major releases as of this
writing. Because Terraform is a relatively new tool, it is possible that
future releases will contain backward-incompatible changes and that
some of the best practices will change and evolve over time.

I’ll try to release updates as often as I can, but the Terraform project
moves fast, so you’ll need to do some work to keep up with it on your
own. For the latest news, blog posts, and talks on Terraform and
DevOps, be sure to check out this book’s website and subscribe to the
newsletter!

Using the Code Examples
If you have a technical question or a problem using the code examples,
please send email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code
is offered with this book, you may use it in your programs and
documentation. You do not need to contact us for permission unless you’re
reproducing a significant portion of the code. For example, writing a
program that uses several chunks of code from this book does not require
permission. Selling or distributing examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant
amount of example code from this book into your product’s documentation
does require permission.

We appreciate, but generally do not require, attribution. An attribution
usually includes the title, author, publisher, and ISBN. For example:
“Terraform: Up and Running, Third Edition by Yevgeniy Brikman
(O’Reilly). Copyright 2022 Yevgeniy Brikman, 978-1-098-11674-3.”

http://www.terraformupandrunning.com/
http://www.terraformupandrunning.com/#newsletter
mailto:bookquestions@oreilly.com


If you feel your use of code examples falls outside fair use or the
permission given above, feel free to contact O’Reilly Media at
permissions@oreilly.com.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic

Indicates new terms, URLs, email addresses, filenames, and file
extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to
program elements such as variable or function names, databases, data
types, environment variables, statements, and keywords.
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Chapter 1. Why Terraform

Software isn’t done when the code is working on your computer. It’s not
done when the tests pass. And it’s not done when someone gives you a
“ship it” on a code review. Software isn’t done until you deliver it to the
user.

Software delivery consists of all of the work you need to do to make the
code available to a customer, such as running that code on production
servers, making the code resilient to outages and traffic spikes, and
protecting the code from attackers. Before you dive into the details of
Terraform, it’s worth taking a step back to see where Terraform fits into the
bigger picture of software delivery.

In this chapter, you’ll dive into the following topics:

What is DevOps?

What is infrastructure as code?

What are the benefits of infrastructure as code?

How does Terraform work?

How does Terraform compare to other infrastructure-as-code tools?

What Is DevOps?
In the not-so-distant past, if you wanted to build a software company, you
also needed to manage a lot of hardware. You would set up cabinets and
racks, load them up with servers, hook up wiring, install cooling, build
redundant power systems, and so on. It made sense to have one team,
typically called Developers (“Devs”), dedicated to writing the software, and
a separate team, typically called Operations (“Ops”), dedicated to managing
this hardware.



The typical Dev team would build an application and “toss it over the wall”
to the Ops team. It was then up to Ops to figure out how to deploy and run
that application. Most of this was done manually. In part, that was
unavoidable, because much of the work had to do with physically hooking
up hardware (e.g., racking servers, hooking up network cables). But even
the work Ops did in software, such as installing the application and its
dependencies, was often done by manually executing commands on a
server.

This works well for a while, but as the company grows, you eventually run
into problems. It typically plays out like this: because releases are done
manually, as the number of servers increases, releases become slow, painful,
and unpredictable. The Ops team occasionally makes mistakes, so you end
up with snowflake servers, wherein each one has a subtly different
configuration from all the others (a problem known as configuration drift).
As a result, the number of bugs increases. Developers shrug and say, “It
works on my machine!” Outages and downtime become more frequent.

The Ops team, tired from their pagers going off at 3 a.m. after every release,
reduce the release cadence to once per week. Then to once per month. Then
once every six months. Weeks before the biannual release, teams begin
trying to merge all of their projects together, leading to a huge mess of
merge conflicts. No one can stabilize the release branch. Teams begin
blaming one another. Silos form. The company grinds to a halt.

Nowadays, a profound shift is taking place. Instead of managing their own
datacenters, many companies are moving to the cloud, taking advantage of
services such as Amazon Web Services (AWS), Microsoft Azure, and
Google Cloud Platform (GCP). Instead of investing heavily in hardware,
many Ops teams are spending all their time working on software, using
tools such as Chef, Puppet, Terraform, Docker, and Kubernetes. Instead of
racking servers and plugging in network cables, many sysadmins are
writing code.

As a result, both Dev and Ops spend most of their time working on
software, and the distinction between the two teams is blurring. It might



still make sense to have a separate Dev team responsible for the application
code and an Ops team responsible for the operational code, but it’s clear
that Dev and Ops need to work more closely together. This is where the
DevOps movement comes from.

DevOps isn’t the name of a team or a job title or a particular technology.
Instead, it’s a set of processes, ideas, and techniques. Everyone has a
slightly different definition of DevOps, but for this book, I’m going to go
with the following:

The goal of DevOps is to make software delivery vastly more efficient.

Instead of multiday merge nightmares, you integrate code continuously and
always keep it in a deployable state. Instead of deploying code once per
month, you can deploy code dozens of times per day, or even after every
single commit. And instead of constant outages and downtime, you build
resilient, self-healing systems and use monitoring and alerting to catch
problems that can’t be resolved automatically.

The results from companies that have undergone DevOps transformations
are astounding. For example, Nordstrom found that after applying DevOps
practices to its organization, it was able to increase the number of features it
delivered per month by 100%, reduce defects by 50%, reduce lead times
(the time from coming up with an idea to running code in production) by
60%, and reduce the number of production incidents by 60% to 90%. After
HP’s LaserJet Firmware division began using DevOps practices, the amount
of time its developers spent on developing new features went from 5% to
40%, and overall development costs were reduced by 40%. Etsy used
DevOps practices to go from stressful, infrequent deployments that caused
numerous outages to deploying 25 to 50 times per day, with far fewer
outages.

There are four core values in the DevOps movement: culture, automation,
measurement, and sharing (sometimes abbreviated as the acronym CAMS).
This book is not meant as a comprehensive overview of DevOps (check out
Appendix A for recommended reading), so I will just focus on one of these
values: automation.
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The goal is to automate as much of the software delivery process as
possible. That means that you manage your infrastructure not by clicking
around a web page or manually executing shell commands, but through
code. This is a concept that is typically called infrastructure as code.

What Is Infrastructure as Code?
The idea behind infrastructure as code (IaC) is that you write and execute
code to define, deploy, update, and destroy your infrastructure. This
represents an important shift in mindset in which you treat all aspects of
operations as software—even those aspects that represent hardware (e.g.,
setting up physical servers). In fact, a key insight of DevOps is that you can
manage almost everything in code, including servers, databases, networks,
logfiles, application configuration, documentation, automated tests,
deployment processes, and so on.

There are five broad categories of IaC tools:

Ad hoc scripts

Configuration management tools

Server templating tools

Orchestration tools

Provisioning tools

Let’s look at these one at a time.

Ad Hoc Scripts
The most straightforward approach to automating anything is to write an ad
hoc script. You take whatever task you were doing manually, break it down
into discrete steps, use your favorite scripting language (e.g., Bash, Ruby,
Python) to define each of those steps in code, and execute that script on
your server, as shown in Figure 1-1.



Figure 1-1. The most straightforward way to automate things is to create an ad hoc script that you
run on your servers.

For example, here is a Bash script called setup-webserver.sh that configures
a web server by installing dependencies, checking out some code from a Git
repo, and firing up an Apache web server:



# Update the apt-get cache 
sudo apt-get update 
 
# Install PHP and Apache 
sudo apt-get install -y php apache2 
 
# Copy the code from the repository 
sudo git clone https://github.com/brikis98/php-app.git 
/var/www/html/app 
 
# Start Apache 
sudo service apache2 start

The great thing about ad hoc scripts is that you can use popular, general-
purpose programming languages, and you can write the code however you
want. The terrible thing about ad hoc scripts is that you can use popular,
general-purpose programming languages, and you can write the code
however you want.

Whereas tools that are purpose-built for IaC provide concise APIs for
accomplishing complicated tasks, if you’re using a general-purpose
programming language, you need to write completely custom code for
every task. Moreover, tools designed for IaC usually enforce a particular
structure for your code, whereas with a general-purpose programming
language, each developer will use their own style and do something
different. Neither of these problems is a big deal for an eight-line script that
installs Apache, but it gets messy if you try to use ad hoc scripts to manage
dozens of servers, databases, load balancers, network configurations, and so
on.

If you’ve ever had to maintain a large repository of Bash scripts, you know
that it almost always devolves into a mess of unmaintainable spaghetti
code. Ad hoc scripts are great for small, one-off tasks, but if you’re going to
be managing all of your infrastructure as code, then you should use an IaC
tool that is purpose-built for the job.

Configuration Management Tools



Chef, Puppet, and Ansible are all configuration management tools, which
means that they are designed to install and manage software on existing
servers. For example, here is an Ansible role called web-server.yml that
configures the same Apache web server as the setup-webserver.sh script:

- name: Update the apt-get cache
  apt:
    update_cache: yes 
 
- name: Install PHP
  apt:
    name: php 
 
- name: Install Apache
  apt:
    name: apache2 
 
- name: Copy the code from the repository
  git: repo=https://github.com/brikis98/php-app.git 
dest=/var/www/html/app 
 
- name: Start Apache
  service: name=apache2 state=started enabled=yes

The code looks similar to the Bash script, but using a tool like Ansible
offers a number of advantages:

Coding conventions

Ansible enforces a consistent, predictable structure, including
documentation, file layout, clearly named parameters, secrets
management, and so on. While every developer organizes their ad hoc
scripts in a different way, most configuration management tools come
with a set of conventions that makes it easier to navigate the code.

Idempotence

Writing an ad hoc script that works once isn’t too difficult; writing an ad
hoc script that works correctly even if you run it over and over again is
much harder. Every time you go to create a folder in your script, you
need to remember to check whether that folder already exists; every



time you add a line of configuration to a file, you need to check that line
doesn’t already exist; every time you want to run an app, you need to
check that the app isn’t already running.

Code that works correctly no matter how many times you run it is called
idempotent code. To make the Bash script from the previous section
idempotent, you’d need to add many lines of code, including lots of if-
statements. Most Ansible functions, on the other hand, are idempotent
by default. For example, the web-server.yml Ansible role will install
Apache only if it isn’t installed already and will try to start the Apache
web server only if it isn’t running already.

Distribution

Ad hoc scripts are designed to run on a single, local machine. Ansible
and other configuration management tools are designed specifically for
managing large numbers of remote servers, as shown in Figure 1-2.



Figure 1-2. A configuration management tool like Ansible can execute your code across a large
number of servers.

For example, to apply the web-server.yml role to five servers, you first
create a file called hosts that contains the IP addresses of those servers:

[webservers] 

11.11.11.11 

11.11.11.12 

11.11.11.13 



11.11.11.14 

11.11.11.15

Next, you define the following Ansible playbook:

- hosts: webservers

  roles:

  - webserver

Finally, you execute the playbook as follows:

ansible-playbook playbook.yml

This instructs Ansible to configure all five servers in parallel.
Alternatively, by setting a parameter called serial in the playbook,
you can do a rolling deployment, which updates the servers in batches.
For example, setting serial to 2 directs Ansible to update two of the
servers at a time, until all five are done. Duplicating any of this logic in
an ad hoc script would take dozens or even hundreds of lines of code.

Server Templating Tools
An alternative to configuration management that has been growing in
popularity recently are server templating tools such as Docker, Packer, and
Vagrant. Instead of launching a bunch of servers and configuring them by
running the same code on each one, the idea behind server templating tools
is to create an image of a server that captures a fully self-contained
“snapshot” of the operating system (OS), the software, the files, and all
other relevant details. You can then use some other IaC tool to install that
image on all of your servers, as shown in Figure 1-3.





Figure 1-3. You can use a server templating tool like Packer to create a self-contained image of a
server. You can then use other tools, such as Ansible, to install that image across all of your servers.

There are two broad categories of tools for working with images (Figure 1-
4):

Virtual machines

A virtual machine (VM) emulates an entire computer system, including
the hardware. You run a hypervisor, such as VMware, VirtualBox, or
Parallels, to virtualize (i.e., simulate) the underlying CPU, memory,
hard drive, and networking.

The benefit of this is that any VM image that you run on top of the
hypervisor can see only the virtualized hardware, so it’s fully isolated
from the host machine and any other VM images, and it will run exactly
the same way in all environments (e.g., your computer, a QA server, a
production server). The drawback is that virtualizing all this hardware
and running a totally separate OS for each VM incurs a lot of overhead
in terms of CPU usage, memory usage, and startup time. You can define
VM images as code using tools such as Packer and Vagrant.

Containers

A container emulates the user space of an OS.  You run a container
engine, such as Docker, CoreOS rkt, or cri-o, to create isolated
processes, memory, mount points, and networking.

The benefit of this is that any container you run on top of the container
engine can see only its own user space, so it’s isolated from the host
machine and other containers and will run exactly the same way in all
environments (your computer, a QA server, a production server, etc.).
The drawback is that all of the containers running on a single server
share that server’s OS kernel and hardware, so it’s much more difficult
to achieve the level of isolation and security you get with a VM.
However, because the kernel and hardware are shared, your containers
can boot up in milliseconds and have virtually no CPU or memory
overhead. You can define container images as code using tools such as
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Docker and CoreOS rkt; you’ll see an example of how to use Docker in
Chapter 7.





Figure 1-4. The two main types of images: VMs, on the left, and containers, on the right. VMs
virtualize the hardware, whereas containers virtualize only user space.

For example, here is a Packer template called web-server.json that creates
an Amazon Machine Image (AMI), which is a VM image that you can run
on AWS:

{
  "builders": [{
    "ami_name": "packer-example-",
    "instance_type": "t2.micro",
    "region": "us-east-2",
    "type": "amazon-ebs",
    "source_ami": "ami-0fb653ca2d3203ac1",
    "ssh_username": "ubuntu"
  }],
  "provisioners": [{
    "type": "shell",
    "inline": [
      "sudo apt-get update",
      "sudo apt-get install -y php apache2",
      "sudo git clone https://github.com/brikis98/php-app.git 
/var/www/html/app"
    ],
    "environment_vars": [
      "DEBIAN_FRONTEND=noninteractive"
    ],
    "pause_before": "60s"
  }]
}

This Packer template configures the same Apache web server that you saw
in setup-webserver.sh using the same Bash code. The only difference
between the code in the Packer template and the previous examples is that
this Packer template does not start the Apache web server (e.g., by calling
sudo service apache2 start). That’s because server templates
are typically used to install software in images, but it’s only when you run
the image—for example, by deploying it on a server—that you should
actually run that software.

To build an AMI from this template, run packer build
webserver.json. After the build completes, you can install that AMI



on all of your AWS servers and configure each server to run Apache when
the server is booting (you’ll see an example of this in the next section), and
they will all run exactly the same way.

Note that the different server templating tools have slightly different
purposes. Packer is typically used to create images that you run directly on
top of production servers, such as an AMI that you run in your production
AWS account. Vagrant is typically used to create images that you run on
your development computers, such as a VirtualBox image that you run on
your Mac or Windows laptop. Docker is typically used to create images of
individual applications. You can run the Docker images on production or
development computers, as long as some other tool has configured that
computer with the Docker Engine. For example, a common pattern is to use
Packer to create an AMI that has the Docker Engine installed, deploy that
AMI on a cluster of servers in your AWS account, and then deploy
individual Docker containers across that cluster to run your applications.

Server templating is a key component of the shift to immutable
infrastructure. This idea is inspired by functional programming, where
variables are immutable, so after you’ve set a variable to a value, you can
never change that variable again. If you need to update something, you
create a new variable. Because variables never change, it’s a lot easier to
reason about your code.

The idea behind immutable infrastructure is similar: once you’ve deployed
a server, you never make changes to it again. If you need to update
something, such as deploying a new version of your code, you create a new
image from your server template and you deploy it on a new server.
Because servers never change, it’s a lot easier to reason about what’s
deployed.

Orchestration Tools
Server templating tools are great for creating VMs and containers, but how
do you actually manage them? For most real-world use cases, you’ll need a
way to do the following:



Deploy VMs and containers, making efficient use of your hardware.

Roll out updates to an existing fleet of VMs and containers using
strategies such as rolling deployment, blue-green deployment, and
canary deployment.

Monitor the health of your VMs and containers and automatically
replace unhealthy ones (auto healing).

Scale the number of VMs and containers up or down in response to
load (auto scaling).

Distribute traffic across your VMs and containers (load balancing).

Allow your VMs and containers to find and talk to one another over
the network (service discovery).

Handling these tasks is the realm of orchestration tools such as Kubernetes,
Marathon/Mesos, Amazon Elastic Container Service (Amazon ECS),
Docker Swarm, and Nomad. For example, Kubernetes allows you to define
how to manage your Docker containers as code. You first deploy a
Kubernetes cluster, which is a group of servers that Kubernetes will
manage and use to run your Docker containers. Most major cloud providers
have native support for deploying managed Kubernetes clusters, such as
Amazon Elastic Kubernetes Service (EKS), Google Kubernetes Engine
(GKE), and Azure Kubernetes Service (AKS).

Once you have a working cluster, you can define how to run your Docker
container as code in a YAML file:

apiVersion: apps/v1 
 
# Use a Deployment to deploy multiple replicas of your Docker
# container(s) and to declaratively roll out updates to them
kind: Deployment 
 
# Metadata about this Deployment, including its name
metadata:
  name: example-app 
 
# The specification that configures this Deployment



spec:
  # This tells the Deployment how to find your container(s)
  selector:
    matchLabels:
      app: example-app 
 
  # This tells the Deployment to run three replicas of your
  # Docker container(s)
  replicas: 3 
 
  # Specifies how to update the Deployment. Here, we
  # configure a rolling update.
  strategy:
    rollingUpdate:
      maxSurge: 3
      maxUnavailable: 0
    type: RollingUpdate 
 
  # This is the template for what container(s) to deploy
  template: 
 
    # The metadata for these container(s), including labels
    metadata:
      labels:
        app: example-app 
 
    # The specification for your container(s)
    spec:
      containers: 
 
        # Run Apache listening on port 80
        - name: example-app
          image: httpd:2.4.39
          ports:
            - containerPort: 80

This file instructs Kubernetes to create a Deployment, which is a declarative
way to define the following:

One or more Docker containers to run together. This group of
containers is called a Pod. The Pod defined in the preceding code
contains a single Docker container that runs Apache.

The settings for each Docker container in the Pod. The Pod in the
preceding code configures Apache to listen on port 80.



How many copies (aka replicas) of the Pod to run in your cluster. The
preceding code configures three replicas. Kubernetes automatically
figures out where in your cluster to deploy each Pod, using a
scheduling algorithm to pick the optimal servers in terms of high
availability (e.g., try to run each Pod on a separate server so a single
server crash doesn’t take down your app), resources (e.g., pick servers
that have available the ports, CPU, memory, and other resources
required by your containers), performance (e.g., try to pick servers
with the least load and fewest containers on them), and so on.
Kubernetes also constantly monitors the cluster to ensure that there are
always three replicas running, automatically replacing any Pods that
crash or stop responding.

How to deploy updates. When deploying a new version of the Docker
container, the preceding code rolls out three new replicas, waits for
them to be healthy, and then undeploys the three old replicas.

That’s a lot of power in just a few lines of YAML! You run kubectl
apply -f example-app.yml to instruct Kubernetes to deploy your
app. You can then make changes to the YAML file and run kubectl
apply again to roll out the updates. You can also manage both the
Kubernetes cluster and the apps within it using Terraform; you’ll see an
example of this in Chapter 7.

Provisioning Tools
Whereas configuration management, server templating, and orchestration
tools define the code that runs on each server, provisioning tools such as
Terraform, CloudFormation, OpenStack Heat, and Pulumi are responsible
for creating the servers themselves. In fact, you can use provisioning tools
to create not only servers but also databases, caches, load balancers, queues,
monitoring, subnet configurations, firewall settings, routing rules, Secure
Sockets Layer (SSL) certificates, and almost every other aspect of your
infrastructure, as shown in Figure 1-5.

For example, the following code deploys a web server using Terraform:



resource "aws_instance" "app" {
  instance_type     = "t2.micro"
  availability_zone = "us-east-2a"
  ami               = "ami-0fb653ca2d3203ac1" 
 
  user_data = <<-EOF
              #!/bin/bash 
              sudo service apache2 start 
              EOF
}

Don’t worry if you’re not yet familiar with some of the syntax. For now,
just focus on two parameters:

ami

This parameter specifies the ID of an AMI to deploy on the server. You
could set this parameter to the ID of an AMI built from the web-
server.json Packer template in the previous section, which has PHP,
Apache, and the application source code.

user_data

This is a Bash script that executes when the web server is booting. The
preceding code uses this script to boot up Apache.

In other words, this code shows you provisioning and server templating
working together, which is a common pattern in immutable infrastructure.





Figure 1-5. You can use provisioning tools with your cloud provider to create servers, databases,
load balancers, and all other parts of your infrastructure.

What Are the Benefits of Infrastructure as
Code?
Now that you’ve seen all the different flavors of IaC, a good question to ask
is, why bother? Why learn a bunch of new languages and tools and
encumber yourself with yet more code to manage?

The answer is that code is powerful. In exchange for the upfront investment
of converting your manual practices to code, you get dramatic
improvements in your ability to deliver software. According to the 2016
State of DevOps Report, organizations that use DevOps practices, such as
IaC, deploy 200 times more frequently, recover from failures 24 times
faster, and have lead times that are 2,555 times lower.

When your infrastructure is defined as code, you are able to use a wide
variety of software engineering practices to dramatically improve your
software delivery process, including the following:

Self-service

Most teams that deploy code manually have a small number of
sysadmins (often, just one) who are the only ones who know all the
magic incantations to make the deployment work and are the only ones
with access to production. This becomes a major bottleneck as the
company grows. If your infrastructure is defined in code, the entire
deployment process can be automated, and developers can kick off their
own deployments whenever necessary.

Speed and safety

If the deployment process is automated, it will be significantly faster,
since a computer can carry out the deployment steps far faster than a
person, and safer, given that an automated process will be more
consistent, more repeatable, and not prone to manual error.

https://oreil.ly/iQp7n


Documentation

If the state of your infrastructure is locked away in a single sysadmin’s
head, and that sysadmin goes on vacation or leaves the company or gets
hit by a bus,  you may suddenly realize you can no longer manage your
own infrastructure. On the other hand, if your infrastructure is defined
as code, then the state of your infrastructure is in source files that
anyone can read. In other words, IaC acts as documentation, allowing
everyone in the organization to understand how things work, even if the
sysadmin goes on vacation.

Version control

You can store your IaC source files in version control, which means that
the entire history of your infrastructure is now captured in the commit
log. This becomes a powerful tool for debugging issues, because any
time a problem pops up, your first step will be to check the commit log
and find out what changed in your infrastructure, and your second step
might be to resolve the problem by simply reverting back to a previous,
known-good version of your IaC code.

Validation

If the state of your infrastructure is defined in code, for every single
change, you can perform a code review, run a suite of automated tests,
and pass the code through static analysis tools—all practices that are
known to significantly reduce the chance of defects.

Reuse

You can package your infrastructure into reusable modules so that
instead of doing every deployment for every product in every
environment from scratch, you can build on top of known, documented,
battle-tested pieces.

Happiness

4
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There is one other very important, and often overlooked, reason for why
you should use IaC: happiness. Deploying code and managing
infrastructure manually is repetitive and tedious. Developers and
sysadmins resent this type of work, since it involves no creativity, no
challenge, and no recognition. You could deploy code perfectly for
months, and no one will take notice—until that one day when you mess
it up. That creates a stressful and unpleasant environment. IaC offers a
better alternative that allows computers to do what they do best
(automation) and developers to do what they do best (coding).

Now that you have a sense of why IaC is important, the next question is
whether Terraform is the best IaC tool for you. To answer that, I’m first
going to go through a very quick primer on how Terraform works, and then
I’ll compare it to the other popular IaC options out there, such as Chef,
Puppet, and Ansible.

How Does Terraform Work?
Here is a high-level and somewhat simplified view of how Terraform
works. Terraform is an open source tool created by HashiCorp and written
in the Go programming language. The Go code compiles down into a single
binary (or rather, one binary for each of the supported operating systems)
called, not surprisingly, terraform.

You can use this binary to deploy infrastructure from your laptop or a build
server or just about any other computer, and you don’t need to run any extra
infrastructure to make that happen. That’s because under the hood, the
terraform binary makes API calls on your behalf to one or more
providers, such as AWS, Azure, Google Cloud, DigitalOcean, OpenStack,
and more. This means that Terraform gets to leverage the infrastructure
those providers are already running for their API servers, as well as the
authentication mechanisms you’re already using with those providers (e.g.,
the API keys you already have for AWS).



How does Terraform know what API calls to make? The answer is that you
create Terraform configurations, which are text files that specify what
infrastructure you want to create. These configurations are the “code” in
“infrastructure as code.” Here’s an example Terraform configuration:

resource "aws_instance" "example" {
  ami           = "ami-0fb653ca2d3203ac1"
  instance_type = "t2.micro"
} 
 
resource "google_dns_record_set" "a" {
  name         = "demo.google-example.com"
  managed_zone = "example-zone"
  type         = "A"
  ttl          = 300
  rrdatas      = [aws_instance.example.public_ip]
}

Even if you’ve never seen Terraform code before, you shouldn’t have too
much trouble reading it. This snippet instructs Terraform to make API calls
to AWS to deploy a server, and then make API calls to Google Cloud to
create a Domain Name System (DNS) entry pointing to the AWS server’s
IP address. In just a single, simple syntax (which you’ll learn in Chapter 2),
Terraform allows you to deploy interconnected resources across multiple
cloud providers.

You can define your entire infrastructure—servers, databases, load
balancers, network topology, and so on—in Terraform configuration files
and commit those files to version control. You then run certain Terraform
commands, such as terraform apply, to deploy that infrastructure.
The terraform binary parses your code, translates it into a series of API
calls to the cloud providers specified in the code, and makes those API calls
as efficiently as possible on your behalf, as shown in Figure 1-6.



Figure 1-6. Terraform is a binary that translates the contents of your configurations into API calls to
cloud providers.

When someone on your team needs to make changes to the infrastructure,
instead of updating the infrastructure manually and directly on the servers,
they make their changes in the Terraform configuration files, validate those
changes through automated tests and code reviews, commit the updated
code to version control, and then run the terraform apply command
to have Terraform make the necessary API calls to deploy the changes.



TRANSPARENT PORTABILITY BETWEEN CLOUD
PROVIDERS

Because Terraform supports many different cloud providers, a common question that
arises is whether it supports transparent portability between them. For example, if you
used Terraform to define a bunch of servers, databases, load balancers, and other
infrastructure in AWS, could you instruct Terraform to deploy exactly the same
infrastructure in another cloud provider, such as Azure or Google Cloud, in just a few
commands?

This question turns out to be a bit of a red herring. The reality is that you can’t deploy
“exactly the same infrastructure” in a different cloud provider because the cloud
providers don’t offer the same types of infrastructure! The servers, load balancers, and
databases offered by AWS are very different from those in Azure and Google Cloud in
terms of features, configuration, management, security, scalability, availability,
observability, and so on. There is no easy way to “transparently” paper over these
differences, especially as functionality in one cloud provider often doesn’t exist at all in
the others. Terraform’s approach is to allow you to write code that is specific to each
provider, taking advantage of that provider’s unique functionality, but to use the same
language, toolset, and IaC practices under the hood for all providers.

How Does Terraform Compare to Other IaC
Tools?
Infrastructure as code is wonderful, but the process of picking an IaC tool is
not. Many of the IaC tools overlap in what they do. Many of them are open
source. Many of them offer commercial support. Unless you’ve used each
one yourself, it’s not clear what criteria you should use to pick one or the
other.

What makes this even more difficult is that most of the comparisons you
find between these tools do little more than list the general properties of
each one and make it sound as if you could be equally successful with any
of them. And although that’s technically true, it’s not helpful. It’s a bit like
telling a programming newbie that you could be equally successful building
a website with PHP, C, or assembly—a statement that’s technically true but
one that omits a huge amount of information that is essential for making a
good decision.



In the following sections, I’m going to do a detailed comparison between
the most popular configuration management and provisioning tools:
Terraform, Chef, Puppet, Ansible, Pulumi, CloudFormation, and OpenStack
Heat. My goal is to help you decide whether Terraform is a good choice by
explaining why my company, Gruntwork, picked Terraform as our IaC tool
of choice and, in some sense, why I wrote this book.  As with all
technology decisions, it’s a question of trade-offs and priorities, and even
though your particular priorities might be different than mine, my hope is
that sharing this thought process will help you to make your own decision.

Here are the main trade-offs to consider:

Configuration management versus provisioning

Mutable infrastructure versus immutable infrastructure

Procedural language versus declarative language

General-purpose language versus domain-specific language

Master versus masterless

Agent versus agentless

Paid versus free offering

Large community versus small community

Mature versus cutting-edge

Use of multiple tools together

Configuration Management Versus Provisioning
As you saw earlier, Chef, Puppet, and Ansible are all configuration
management tools, whereas CloudFormation, Terraform, OpenStack Heat,
and Pulumi are all provisioning tools.

Although the distinction is not entirely clear cut, given that configuration
management tools can typically do some degree of provisioning (e.g., you
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can deploy a server with Ansible) and that provisioning tools can typically
do some degree of configuration (e.g., you can run configuration scripts on
each server you provision with Terraform), you typically want to pick the
tool that’s the best fit for your use case.

In particular, if you use server templating tools, the vast majority of your
configuration management needs are already taken care of. Once you have
an image created from a Dockerfile or Packer template, all that’s left to
do is provision the infrastructure for running those images. And when it
comes to provisioning, a provisioning tool is going to be your best choice.
In Chapter 7, you’ll see an example of how to use Terraform and Docker
together, which is a particularly popular combination these days.

That said, if you’re not using server templating tools, a good alternative is
to use a configuration management and provisioning tool together. For
example, a popular combination is to use Terraform to provision your
servers and Ansible to configure each one.

Mutable Infrastructure Versus Immutable Infrastructure
Configuration management tools such as Chef, Puppet, and Ansible
typically default to a mutable infrastructure paradigm.

For example, if you instruct Chef to install a new version of OpenSSL, it
will run the software update on your existing servers, and the changes will
happen in place. Over time, as you apply more and more updates, each
server builds up a unique history of changes. As a result, each server
becomes slightly different than all the others, leading to subtle
configuration bugs that are difficult to diagnose and reproduce (this is the
same configuration drift problem that happens when you manage servers
manually, although it’s much less problematic when using a configuration
management tool). Even with automated tests, these bugs are difficult to
catch; a configuration management change might work just fine on a test
server, but that same change might behave differently on a production
server because the production server has accumulated months of changes
that aren’t reflected in the test environment.



If you’re using a provisioning tool such as Terraform to deploy machine
images created by Docker or Packer, most “changes” are actually
deployments of a completely new server. For example, to deploy a new
version of OpenSSL, you would use Packer to create a new image with the
new version of OpenSSL, deploy that image across a set of new servers,
and then terminate the old servers. Because every deployment uses
immutable images on fresh servers, this approach reduces the likelihood of
configuration drift bugs, makes it easier to know exactly what software is
running on each server, and allows you to easily deploy any previous
version of the software (any previous image) at any time. It also makes your
automated testing more effective, because an immutable image that passes
your tests in the test environment is likely to behave exactly the same way
in the production environment.

Of course, it’s possible to force configuration management tools to do
immutable deployments, too, but it’s not the idiomatic approach for those
tools, whereas it’s a natural way to use provisioning tools. It’s also worth
mentioning that the immutable approach has downsides of its own. For
example, rebuilding an image from a server template and redeploying all
your servers for a trivial change can take a long time. Moreover,
immutability lasts only until you actually run the image. After a server is up
and running, it will begin making changes on the hard drive and
experiencing some degree of configuration drift (although this is mitigated
if you deploy frequently).

Procedural Language Versus Declarative Language
Chef and Ansible encourage a procedural style in which you write code that
specifies, step by step, how to achieve some desired end state.

Terraform, CloudFormation, Puppet, OpenStack Heat, and Pulumi all
encourage a more declarative style in which you write code that specifies
your desired end state, and the IaC tool itself is responsible for figuring out
how to achieve that state.



To demonstrate the difference, let’s go through an example. Imagine that
you want to deploy 10 servers (EC2 Instances in AWS lingo) to run an AMI
with ID ami-0fb653ca2d3203ac1 (Ubuntu 20.04). Here is a
simplified example of an Ansible template that does this using a procedural
approach:

- ec2:
    count: 10
    image: ami-0fb653ca2d3203ac1
    instance_type: t2.micro

And here is a simplified example of a Terraform configuration that does the
same thing using a declarative approach:

resource "aws_instance" "example" {
  count         = 10
  ami           = "ami-0fb653ca2d3203ac1"
  instance_type = "t2.micro"
}

On the surface, these two approaches might look similar, and when you
initially execute them with Ansible or Terraform, they will produce similar
results. The interesting thing is what happens when you want to make a
change.

For example, imagine traffic has gone up, and you want to increase the
number of servers to 15. With Ansible, the procedural code you wrote
earlier is no longer useful; if you just updated the number of servers to 15
and reran that code, it would deploy 15 new servers, giving you 25 total! So
instead, you need to be aware of what is already deployed and write a
totally new procedural script to add the five new servers:

- ec2:
    count: 5
    image: ami-0fb653ca2d3203ac1
    instance_type: t2.micro



With declarative code, because all you do is declare the end state that you
want and Terraform figures out how to get to that end state, Terraform will
also be aware of any state it created in the past. Therefore, to deploy five
more servers, all you need to do is go back to the same Terraform
configuration and update the count from 10 to 15:

resource "aws_instance" "example" {
  count         = 15
  ami           = "ami-0fb653ca2d3203ac1"
  instance_type = "t2.micro"
}

If you applied this configuration, Terraform would realize it had already
created 10 servers and therefore all it needs to do is create five new servers.
In fact, before applying this configuration, you can use Terraform’s plan
command to preview what changes it would make:

$ terraform plan 
 
# aws_instance.example[11] will be created 
+ resource "aws_instance" "example" { 
    + ami            = "ami-0fb653ca2d3203ac1" 
    + instance_type  = "t2.micro" 
    + (...) 
  } 
 
# aws_instance.example[12] will be created 
+ resource "aws_instance" "example" { 
    + ami            = "ami-0fb653ca2d3203ac1" 
    + instance_type  = "t2.micro" 
    + (...) 
  } 
 
# aws_instance.example[13] will be created 
+ resource "aws_instance" "example" { 
    + ami            = "ami-0fb653ca2d3203ac1" 
    + instance_type  = "t2.micro" 
    + (...) 
  } 
 
# aws_instance.example[14] will be created 
+ resource "aws_instance" "example" { 
    + ami            = "ami-0fb653ca2d3203ac1" 



    + instance_type  = "t2.micro" 
    + (...) 
  } 
 
Plan: 5 to add, 0 to change, 0 to destroy.

Now what happens when you want to deploy a different version of the app,
such as AMI ID ami-02bcbb802e03574ba? With the procedural
approach, both of your previous Ansible templates are again not useful, so
you need to write yet another template to track down the 10 servers you
deployed previously (or was it 15 now?) and carefully update each one to
the new version. With the declarative approach of Terraform, you go back
to the exact same configuration file again and simply change the ami
parameter to ami-02bcbb802e03574ba:

resource "aws_instance" "example" {
  count         = 15
  ami           = "ami-02bcbb802e03574ba"
  instance_type = "t2.micro"
}

Obviously, these examples are simplified. Ansible does allow you to use
tags to search for existing EC2 Instances before deploying new ones (e.g.,
using the instance_tags and count_tag parameters), but having to
manually figure out this sort of logic for every single resource you manage
with Ansible, based on each resource’s past history, can be surprisingly
complicated: for example, you may have to manually configure your code
to look up existing Instances not only by tag but also by image version,
Availability Zone, and other parameters. This highlights two major
problems with procedural IaC tools:

Procedural code does not fully capture the state of the infrastructure

Reading through the three preceding Ansible templates is not enough to
know what’s deployed. You’d also need to know the order in which
those templates were applied. Had you applied them in a different order,
you might have ended up with different infrastructure, and that’s not
something you can see in the codebase itself. In other words, to reason



about an Ansible or Chef codebase, you need to know the full history of
every change that has ever happened.

Procedural code limits reusability

The reusability of procedural code is inherently limited because you
must manually take into account the current state of the infrastructure.
Because that state is constantly changing, code you used a week ago
might no longer be usable because it was designed to modify a state of
your infrastructure that no longer exists. As a result, procedural
codebases tend to grow large and complicated over time.

With Terraform’s declarative approach, the code always represents the latest
state of your infrastructure. At a glance, you can determine what’s currently
deployed and how it’s configured, without having to worry about history or
timing. This also makes it easy to create reusable code, since you don’t
need to manually account for the current state of the world. Instead, you just
focus on describing your desired state, and Terraform figures out how to get
from one state to the other automatically. As a result, Terraform codebases
tend to stay small and easy to understand.

General-Purpose Language Versus Domain-Specific
Language
Chef and Pulumi allow you to use a general-purpose programming
language (GPL) to manage infrastructure as code: Chef supports Ruby;
Pulumi supports a wide variety of GPLs, including JavaScript, TypeScript,
Python, Go, C#, Java, and others. Terraform, Puppet, Ansible,
CloudFormation, and OpenStack Heat each use a domain-specific language
(DSL) to manage infrastructure as code: Terraform uses HCL; Puppet uses
Puppet Language; Ansible, CloudFormation, and OpenStack Heat use
YAML (CloudFormation also supports JSON).

The distinction between GPLs and DSLs is not entirely clear-cut—it’s more
of a helpful mental model than a clean, separate categorization—but the
basic idea is that DSLs are designed for use in one specific domain,



whereas GPLs can be used across a broad range of domains. For example,
the HCL code you write for Terraform works only with Terraform and is
limited solely to the functionality supported by Terraform, such as
deploying infrastructure. This is in contrast to using a GPL such as
JavaScript with Pulumi, where the code you write can not only manage
infrastructure using Pulumi libraries but also perform almost any other
programming task you wish, such as run a web app (in fact, Pulumi offers
an Automation API you can use to embed Pulumi within your application
code), perform complicated control logic (loops, conditionals, and
abstraction are all easier to do in a GPL than a DSL), run various
validations and tests, integrate with other tools and APIs, and so on.

DSLs have several advantages over GPLs:

Easier to learn

Since DSLs, by design, deal with just one domain, they tend to be
smaller and simpler languages than GPLs and therefore are easier to
learn than GPLs. Most developers will be able to learn Terraform faster
than, say, Java.

Clearer and more concise

Since DSLs are designed for one specific purpose, with all the
keywords in the language built to do that one thing, code written in
DSLs tends to be easier to understand and more concise than code
written to do the exact same thing but written in a GPL. The code to
deploy a single server in AWS is usually going to be shorter and easier
to understand in Terraform than in Java.

More uniform

Most DSLs are limited in what they allow you to do. This has some
drawbacks, as I’ll mention shortly, but one of the advantages is that
code written in DSLs typically uses a uniform, predictable structure, so
it’s easier to navigate and understand than code written in GPLs, where
every developer might solve the same problem in a completely different



way. There’s really only one way to deploy a server in AWS using
Terraform; there are hundreds of ways to do the same thing with Java.

GPLs also have several advantages over DSLs:

Possibly no need to learn anything new

Since GPLs are used in many domains, there’s a chance you might not
have to learn a new language at all. This is especially true of Pulumi, as
it supports several of the most popular languages in the world, including
JavaScript, Python, and Java. If you already know Java, you’ll be able
to jump into Pulumi faster than if you had to learn HCL to use
Terraform.

Bigger ecosystem and more mature tooling

Since GPLs are used in many domains, they have far bigger
communities and much more mature tooling than a typical DSL. The
number and quality of Integrated Development Environments (IDEs),
libraries, patterns, testing tools, and so on for Java vastly exceeds what’s
available for Terraform.

More power

GPLs, by design, can be used to do almost any programming task, so
they offer much more power and functionality than DSLs. Certain tasks,
such as control logic (loops and conditionals), automated testing, code
reuse, abstraction, and integration with other tools, are far easier with
Java than with Terraform.

Master Versus Masterless
By default, Chef and Puppet require that you run a master server for storing
the state of your infrastructure and distributing updates. Every time you
want to update something in your infrastructure, you use a client (e.g., a
command-line tool) to issue new commands to the master server, and the
master server either pushes the updates out to all of the other servers or



those servers pull the latest updates down from the master server on a
regular basis.

A master server offers a few advantages. First, it’s a single, central place
where you can see and manage the status of your infrastructure. Many
configuration management tools even provide a web interface (e.g., the
Chef Console, Puppet Enterprise Console) for the master server to make it
easier to see what’s going on. Second, some master servers can run
continuously in the background and enforce your configuration. That way,
if someone makes a manual change on a server, the master server can revert
that change to prevent configuration drift.

However, having to run a master server has some serious drawbacks:

Extra infrastructure

You need to deploy an extra server, or even a cluster of extra servers
(for high availability and scalability), just to run the master.

Maintenance

You need to maintain, upgrade, back up, monitor, and scale the master
server(s).

Security

You need to provide a way for the client to communicate to the master
server(s) and a way for the master server(s) to communicate with all the
other servers, which typically means opening extra ports and
configuring extra authentication systems, all of which increases your
surface area to attackers.

Chef and Puppet do have varying levels of support for masterless modes
where you run just their agent software on each of your servers, typically on
a periodic schedule (e.g., a cron job that runs every five minutes), and use
that to pull down the latest updates from version control (rather than from a
master server). This significantly reduces the number of moving parts, but,
as I discuss in the next section, this still leaves a number of unanswered



questions, especially about how to provision the servers and install the
agent software on them in the first place.

Ansible, CloudFormation, Heat, Terraform, and Pulumi are all masterless
by default. Or, to be more accurate, some of them rely on a master server,
but it’s already part of the infrastructure you’re using and not an extra piece
that you need to manage. For example, Terraform communicates with cloud
providers using the cloud provider’s APIs, so in some sense, the API
servers are master servers, except that they don’t require any extra
infrastructure or any extra authentication mechanisms (i.e., just use your
API keys). Ansible works by connecting directly to each server over SSH,
so again, you don’t need to run any extra infrastructure or manage extra
authentication mechanisms (i.e., just use your SSH keys).

Agent Versus Agentless
Chef and Puppet require you to install agent software (e.g., Chef Client,
Puppet Agent) on each server that you want to configure. The agent
typically runs in the background on each server and is responsible for
installing the latest configuration management updates.

This has a few drawbacks:

Bootstrapping

How do you provision your servers and install the agent software on
them in the first place? Some configuration management tools kick the
can down the road, assuming that some external process will take care
of this for them (e.g., you first use Terraform to deploy a bunch of
servers with an AMI that has the agent already installed); other
configuration management tools have a special bootstrapping process in
which you run one-off commands to provision the servers using the
cloud provider APIs and install the agent software on those servers over
SSH.

Maintenance



You need to update the agent software on a periodic basis, being careful
to keep it synchronized with the master server if there is one. You also
need to monitor the agent software and restart it if it crashes.

Security

If the agent software pulls down configuration from a master server (or
some other server if you’re not using a master), you need to open
outbound ports on every server. If the master server pushes
configuration to the agent, you need to open inbound ports on every
server. In either case, you must figure out how to authenticate the agent
to the server to which it’s communicating. All of this increases your
surface area to attackers.

Once again, Chef and Puppet do have varying levels of support for
agentless modes, but these feel like they were tacked on as an afterthought
and don’t support the full feature set of the configuration management tool.
That’s why in the wild, the default or idiomatic configuration for Chef and
Puppet almost always includes an agent and usually a master, too, as shown
in Figure 1-7.





Figure 1-7. The typical architecture for Chef and Puppet involves many moving parts. For example,
the default setup for Chef is to run the Chef client on your computer, which talks to a Chef master

server, which deploys changes by communicating with Chef clients running on all your other servers.

All of these extra moving parts introduce a large number of new failure
modes into your infrastructure. Each time you get a bug report at 3 a.m.,
you’ll need to figure out whether it’s a bug in your application code, or your
IaC code, or the configuration management client, or the master server(s),
or the way the client communicates with the master server(s), or the way
other servers communicate with the master server(s), or…

Ansible, CloudFormation, Heat, Terraform, and Pulumi do not require you
to install any extra agents. Or, to be more accurate, some of them require
agents, but these are typically already installed as part of the infrastructure
you’re using. For example, AWS, Azure, Google Cloud, and all of the other
cloud providers take care of installing, managing, and authenticating agent
software on each of their physical servers. As a user of Terraform, you don’t
need to worry about any of that: you just issue commands, and the cloud
provider’s agents execute them for you on all of your servers, as shown in
Figure 1-8. With Ansible, your servers need to run the SSH daemon, which
is common to run on most servers anyway.



Figure 1-8. Terraform uses a masterless, agentless architecture. All you need to run is the Terraform
client, and it takes care of the rest by using the APIs of cloud providers, such as AWS.



Paid Versus Free Offering
CloudFormation and OpenStack Heat are completely free: the resources
you deploy with those tools may cost money, but you don’t pay anything to
use the tools themselves. Terraform, Chef, Puppet, Ansible, and Pulumi are
all available in free versions and paid versions: for example, you can use
the free and open source version of Terraform by itself, or you could choose
to use it with HashiCorp’s paid product, Terraform Cloud. The price points,
packaging, and trade-offs with the paid versions are beyond the scope of
this book. The one question I want to focus on here is whether the free
version is so limited that you are effectively forced to use the paid offering
for real-world, production use cases.

To be clear, there’s nothing wrong with a company offering a paid service
for one of these tools; in fact, if you’re using these tools in production, I
strongly recommend looking into the paid services, as many of them are
well worth the money. However, you have to realize that those paid services
aren’t under your control—they could go out of business, or get acquired
(e.g., Chef, Puppet, and Ansible have all gone through acquisitions that had
significant impacts on their paid product offerings), or change their pricing
model (e.g., Pulumi changed its pricing in 2021, which benefited some
users but increased prices by ~10x for others), or change the product, or
discontinue the product entirely—so it’s important to know whether the IaC
tool you picked would still be usable if, for some reason, you couldn’t use
one of these paid services.

In my experience, the free versions of Terraform, Chef, Puppet, and Ansible
can all be used successfully for production use cases; the paid services can
make these tools even better, but if they weren’t available, you could still
get by. Pulumi, on the other hand, is harder to use in production without the
paid offering known as Pulumi Service.

A key part of managing infrastructure as code is managing state (you’ll
learn about how Terraform manages state in Chapter 3), and Pulumi, by
default, uses Pulumi Service as the backend for state storage. You can
switch to other supported backends for state storage, such as Amazon S3,



Azure Blob Storage, or Google Cloud Storage, but the Pulumi backend
documentation explains that only Pulumi Service supports transactional
checkpointing (for fault tolerance and recovery), concurrent state locking
(to prevent corrupting your infrastructure state in a team environment), and
encrypted state in transit and at rest. In my opinion, without these features,
it’s not practical to use Pulumi in any sort of production environment (i.e.,
with more than one developer), so if you’re going to use Pulumi, you more
or less have to pay for Pulumi Service.

Large Community Versus Small Community
Whenever you pick a technology, you are also picking a community. In
many cases, the ecosystem around the project can have a bigger impact on
your experience than the inherent quality of the technology itself. The
community determines how many people contribute to the project; how
many plugins, integrations, and extensions are available; how easy it is to
find help online (e.g., blog posts, questions on Stack Overflow); and how
easy it is to hire someone to help you (e.g., an employee, consultant, or
support company).

It’s difficult to do an accurate comparison between communities, but you
can spot some trends by searching online. Table 1-1 shows a comparison of
popular IaC tools, with data I gathered in June 2022, including whether the
IaC tool is open source or closed source, what cloud providers it supports,
the total number of contributors and stars on GitHub, how many open
source libraries are available for the tool, and the number of questions listed
for that tool on Stack Overflow.7

https://oreil.ly/gLugF


Obviously, this is not a perfect apples-to-apples comparison. For example,
some of the tools have more than one repository: e.g., Terraform split the
provider code (i.e., the code specific to AWS, Google Cloud, Azure, etc.)
out into separate repos in 2017, so the preceding table significantly
understates activity; some tools offer alternatives to Stack Overflow for
questions; and so on.

That said, a few trends are obvious. First, all of the IaC tools in this
comparison are open source and work with many cloud providers, except
for CloudFormation, which is closed source and works only with AWS.

Table 1-1. A comparison of IaC communities

Source Cloud Contributors Stars

Chef Open All 640 6,910

Puppet Open All 571 6,581

Ansible Open All 5,328 53,479

Pulumi Open All 1,402 12,723

CloudFormation Closed AWS ? ?

Heat Open All 395 379

Terraform Open All 1,621 33,019

a  This is the number of cookbooks in the Chef Supermarket.

b  This is the number of modules in Puppet Forge.

c  This is the number of reusable roles in Ansible Galaxy.

d  This is the number of packages in the Pulumi Registry.

e  This is the number of templates in AWS Quick Starts.

f  I could not find any collections of community Heat templates.

g  This is the number of modules in the Terraform Registry.

https://bit.ly/2MNXWuS
https://calibre-pdf-anchor.a/#a235
https://forge.puppet.com/
https://calibre-pdf-anchor.a/#a236
https://galaxy.ansible.com/
https://calibre-pdf-anchor.a/#a237
https://www.pulumi.com/registry
https://calibre-pdf-anchor.a/#a238
https://aws.amazon.com/quickstart
https://calibre-pdf-anchor.a/#a239
https://calibre-pdf-anchor.a/#a240
https://registry.terraform.io/
https://calibre-pdf-anchor.a/#a241


Second, Ansible and Terraform seem to be the clear leads in terms of
popularity.

Another interesting trend to note is how these numbers have changed since
the first edition of the book. Table 1-2 shows the percentage change in each
of the numbers from the values I gathered in the first edition back in
September 2016. (Note: Pulumi is not included in this table, as it wasn’t
part of this comparison in the first edition of the book.)

Again, the data here is not perfect, but it’s good enough to spot a clear
trend: Terraform and Ansible are experiencing explosive growth. The
increase in the number of contributors, stars, open source libraries, and
Stack Overflow posts is through the roof. Both of these tools have large,
active communities today, and judging by these trends, it’s likely that they
will become even larger in the future.

Mature Versus Cutting Edge
Another key factor to consider when picking any technology is maturity. Is
this a technology that has been around for years, where all the usage

Table 1-2. How the IaC communities have changed between September 2016

Source Cloud Contributors Stars

Chef Open All +34% +56%

Puppet Open All +32% +58%

Ansible Open All +258% +183%

CloudFormation Closed AWS ? ?

Heat Open All +40% +34%

Terraform Open All +148% +476%

a  In earlier editions of the book, I used CloudFormation templates in the awslabs GitHub rep
AWS Quick Starts in this edition, so the numbers aren’t directly comparable.

https://calibre-pdf-anchor.a/#a250


patterns, best practices, problems, and failure modes are well understood?
Or is this a new technology where you’ll have to learn all those hard lessons
from scratch? Table 1-3 shows the initial release dates, current version
numbers (as of June 2022), and my own subjective perception of the
maturity of each of the IaC tools.

Table 1-3. A comparison of IaC maturity as of June 2022

Initial release Current version Perceived maturity

Chef 2009 17.10.3 High

Puppet 2005 7.17.0 High

Ansible 2012 5.9.0 Medium

Pulumi 2017 3.34.1 Low

CloudFormation 2011 ??? Medium

Heat 2012 18.0.0 Low

Terraform 2014 1.2.3 Medium

Again, this is not an apples-to-apples comparison: age alone does not
determine maturity—neither does a high version number (different tools
have different versioning schemes). Still, some trends are clear. Pulumi is
the youngest IaC tool in this comparison and, arguably, the least mature:
this becomes apparent when you search for documentation, best practices,
community modules, etc. Terraform is a bit more mature these days: the
tooling has improved, the best practices are better understood, there are far
more learning resources available (including this book!), and now that it has
reached the 1.0.0 milestone, it is a considerably more stable and reliable
tool than when the first and second editions of this book came out. Chef and
Puppet are the oldest and arguably most mature tools on this list.

Use of Multiple Tools Together



Although I’ve been comparing IaC tools this entire chapter, the reality is
that you will likely need to use multiple tools to build your infrastructure.
Each of the tools you’ve seen has strengths and weaknesses, so it’s your job
to pick the right tools for the job.

The following sections show three common combinations I’ve seen work
well at a number of companies.

Provisioning plus configuration management
Example: Terraform and Ansible. You use Terraform to deploy all the
underlying infrastructure, including the network topology (i.e., virtual
private clouds [VPCs], subnets, route tables), data stores (e.g., MySQL,
Redis), load balancers, and servers. You then use Ansible to deploy your
apps on top of those servers, as depicted in Figure 1-9.

Figure 1-9. Terraform deploys the infrastructure, including servers, and Ansible deploys apps onto
those servers.

This is an easy approach to get started with, because there is no extra
infrastructure to run (Terraform and Ansible are both client-only
applications), and there are many ways to get Ansible and Terraform to
work together (e.g., Terraform adds special tags to your servers, and
Ansible uses those tags to find the servers and configure them). The major
downside is that using Ansible typically means that you’re writing a lot of



procedural code, with mutable servers, so as your codebase, infrastructure,
and team grow, maintenance can become more difficult.

Provisioning plus server templating
Example: Terraform and Packer. You use Packer to package your apps as
VM images. You then use Terraform to deploy servers with these VM
images and the rest of your infrastructure, including the network topology
(i.e., VPCs, subnets, route tables), data stores (e.g., MySQL, Redis), and
load balancers, as illustrated in Figure 1-10.

Figure 1-10. Terraform deploys the infrastructure, including servers, and Packer creates the VMs
that run on those servers.

This is also an easy approach to get started with, because there is no extra
infrastructure to run (Terraform and Packer are both client-only
applications), and you’ll get plenty of practice deploying VM images using
Terraform later in this book. Moreover, this is an immutable infrastructure
approach, which will make maintenance easier. However, there are two
major drawbacks. First, VMs can take a long time to build and deploy,
which will slow down your iteration speed. Second, as you’ll see in later
chapters, the deployment strategies you can implement with Terraform are
limited (e.g., you can’t implement blue-green deployment natively in



Terraform), so you either end up writing lots of complicated deployment
scripts or you turn to orchestration tools, as described next.

Provisioning plus server templating plus orchestration
Example: Terraform, Packer, Docker, and Kubernetes. You use Packer to
create a VM image that has Docker and Kubernetes agents installed. You
then use Terraform to deploy a cluster of servers, each of which runs this
VM image, and the rest of your infrastructure, including the network
topology (i.e., VPCs, subnets, route tables), data stores (e.g., MySQL,
Redis), and load balancers. Finally, when the cluster of servers boots up, it
forms a Kubernetes cluster that you use to run and manage your Dockerized
applications, as shown in Figure 1-11.



Figure 1-11. Terraform deploys the infrastructure, including servers; Packer creates the VMs that
run on those servers; and Kubernetes manages those VMs as a cluster for running Docker

containers.

The advantage of this approach is that Docker images build fairly quickly,
you can run and test them on your local computer, and you can take
advantage of all of the built-in functionality of Kubernetes, including
various deployment strategies, auto healing, auto scaling, and so on. The
drawback is the added complexity, both in terms of extra infrastructure to
run (Kubernetes clusters are difficult and expensive to deploy and operate,
though most major cloud providers now provide managed Kubernetes
services, which can offload some of this work) and in terms of several extra
layers of abstraction (Kubernetes, Docker, Packer) to learn, manage, and
debug.



You’ll see an example of this approach in Chapter 7.

Conclusion
Putting it all together, Table 1-4 shows how the most popular IaC tools
stack up. Note that this table shows the default or most common way the
various IaC tools are used, though as discussed earlier in this chapter, these
IaC tools are flexible enough to be used in other configurations, too (e.g.,
you can use Chef without a master, you can use Puppet to do immutable
infrastructure, etc.).

Table 1-4. A comparison of the most common ways to use the most popular I

Chef Puppet Ansible Pulumi

Source Open Open Open Open

Cloud All All All All

Type Config mgmt Config mgmt Config mgmt Provisioning

Infra Mutable Mutable Mutable Immutable

Paradigm Procedural Declarative Procedural Declarative

Language GPL DSL DSL GPL

Master Yes Yes No No

Agent Yes Yes No No

Paid Service Optional Optional Optional Must-have

Community Large Large Huge Small

Maturity High High Medium Low



At Gruntwork, what we wanted was an open source, cloud-agnostic
provisioning tool with a large community, a mature codebase, and support
for immutable infrastructure, a declarative language, a masterless and
agentless architecture, and an optional paid service. Table 1-4 shows that
Terraform, although not perfect, comes the closest to meeting all of our
criteria.

Does Terraform fit your criteria? If so, head over to Chapter 2 to learn how
to use it.

1  From The DevOps Handbook: How to Create World-Class Agility, Reliability, & Security in
Technology Organizations (IT Revolution Press, 2016) by Gene Kim, Jez Humble, Patrick
Debois, and John Willis.

2  On most modern operating systems, code runs in one of two “spaces”: kernel space or user
space. Code running in kernel space has direct, unrestricted access to all of the hardware.
There are no security restrictions (i.e., you can execute any CPU instruction, access any part of
the hard drive, write to any address in memory) or safety restrictions (e.g., a crash in kernel
space will typically crash the entire computer), so kernel space is generally reserved for the
lowest-level, most trusted functions of the OS (typically called the kernel). Code running in
user space does not have any direct access to the hardware and must use APIs exposed by the
OS kernel instead. These APIs can enforce security restrictions (e.g., user permissions) and
safety (e.g., a crash in a user space app typically affects only that app), so just about all
application code runs in user space.

3  As a general rule, containers provide isolation that’s good enough to run your own code, but if
you need to run third-party code (e.g., you’re building your own cloud provider) that might
actively be performing malicious actions, you’ll want the increased isolation guarantees of a
VM.

4  This is where the term bus factor comes from: your team’s bus factor is the number of people
you can lose (e.g., because they got hit by a bus) before you can no longer operate your
business. You never want to have a bus factor of 1.

5  Check out the Gruntwork Infrastructure as Code Library for an example.

6  Docker, Packer, and Kubernetes are not part of the comparison, because they can be used with
any of the configuration management or provisioning tools.

7  The data on contributors and stars comes from the open source repositories (mostly GitHub)
for each tool. Because CloudFormation is closed source, this information is not available.

https://bit.ly/2H3Y7yT


Chapter 2. Getting Started with
Terraform

In this chapter, you’re going to learn the basics of how to use Terraform. It’s
an easy tool to learn, so in the span of about 40 pages, you’ll go from
running your first Terraform commands all the way up to using Terraform
to deploy a cluster of servers with a load balancer that distributes traffic
across them. This infrastructure is a good starting point for running
scalable, highly available web services. In subsequent chapters, you’ll
develop this example even further.

Terraform can provision infrastructure across public cloud providers such as
AWS, Azure, Google Cloud, and DigitalOcean, as well as private cloud and
virtualization platforms such as OpenStack and VMware. For just about all
of the code examples in this chapter and the rest of the book, you are going
to use AWS. AWS is a good choice for learning Terraform because of the
following:

AWS is the most popular cloud infrastructure provider, by far. It has a
32% share in the cloud infrastructure market, which is more than the
next three biggest competitors (Microsoft, Google, and IBM)
combined.

AWS provides a huge range of reliable and scalable cloud-hosting
services, including Amazon Elastic Compute Cloud (Amazon EC2),
which you can use to deploy virtual servers; Auto Scaling Groups
(ASGs), which make it easier to manage a cluster of virtual servers;
and Elastic Load Balancers (ELBs), which you can use to distribute
traffic across the cluster of virtual servers.

AWS offers a Free Tier for the first year that should allow you to run
all of these examples for free or a very low cost.  If you already used

1

2

3



your Free Tier credits, the examples in this book should still cost you
no more than a few dollars.

If you’ve never used AWS or Terraform before, don’t worry; this tutorial is
designed for novices to both technologies. I’ll walk you through the
following steps:

Setting up your AWS account

Installing Terraform

Deploying a single server

Deploying a single web server

Deploying a configurable web server

Deploying a cluster of web servers

Deploying a load balancer

Cleaning up

EXAMPLE CODE
As a reminder, you can find all of the code examples in the book on GitHub.

Setting Up Your AWS Account
If you don’t already have an AWS account, head over to
https://aws.amazon.com and sign up. When you first register for AWS, you
initially sign in as the root user. This user account has access permissions to
do absolutely anything in the account, so from a security perspective, it’s
not a good idea to use the root user on a day-to-day basis. In fact, the only
thing you should use the root user for is to create other user accounts with
more-limited permissions, and then switch to one of those accounts
immediately.4

https://github.com/brikis98/terraform-up-and-running-code
https://aws.amazon.com/


To create a more-limited user account, you will need to use the Identity and
Access Management (IAM) service. IAM is where you manage user
accounts as well as the permissions for each user. To create a new IAM user,
go to the IAM Console, click Users, and then click the Add Users button.
Enter a name for the user, and make sure “Access key - Programmatic
access” is selected, as shown in Figure 2-1 (note that AWS occasionally
makes changes to its web console, so what you see may look slightly
different than the screenshots in this book).

https://amzn.to/33fM2jf


Figure 2-1. Use the AWS Console to create a new IAM user.

Click the Next button. AWS will ask you to add permissions to the user. By
default, new IAM users have no permissions whatsoever and cannot do



anything in an AWS account. To give your IAM user the ability to do
something, you need to associate one or more IAM Policies with that user’s
account. An IAM Policy is a JSON document that defines what a user is or
isn’t allowed to do. You can create your own IAM Policies or use some of
the predefined IAM Policies built into your AWS account, which are known
as Managed Policies.

To run the examples in this book, the easiest way to get started is to add the
AdministratorAccess Managed Policy to your IAM user (search for
it, and click the checkbox next to it), as shown in Figure 2-2.

5
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Figure 2-2. Add the AdministratorAccess Managed IAM Policy to your new IAM user.

Click Next a couple more times and then the “Create user” button. AWS
will show you the security credentials for that user, which consist of an



Access Key ID and a Secret Access Key, as shown in Figure 2-3. You must
save these immediately because they will never be shown again, and you’ll
need them later on in this tutorial. Remember that these credentials give
access to your AWS account, so store them somewhere secure (e.g., a
password manager such as 1Password, LastPass, or macOS Keychain), and
never share them with anyone.

After you’ve saved your credentials, click the Close button. You’re now
ready to move on to using Terraform.

A NOTE ON DEFAULT VIRTUAL PRIVATE CLOUDS
All of the AWS examples in this book use the Default VPC in your AWS account. A
VPC, or virtual private cloud, is an isolated area of your AWS account that has its own
virtual network and IP address space. Just about every AWS resource deploys into a
VPC. If you don’t explicitly specify a VPC, the resource will be deployed into the
Default VPC, which is part of every AWS account created after 2013. If for some reason
you deleted the Default VPC in your account, either use a different region (each region
has its own Default VPC) or create a new Default VPC using the AWS Web Console.
Otherwise, you’ll need to update almost every example to include a vpc_id or
subnet_id parameter pointing to a custom VPC.

https://amzn.to/31lVUWW


Figure 2-3. Store your AWS credentials somewhere secure. Never share them with anyone. (Don’t
worry, the ones in the screenshot are fake.)

Installing Terraform
The easiest way to install Terraform is to use your operating system’s
package manager. For example, on macOS, if you are a Homebrew user,
you can run the following:

$ brew tap hashicorp/tap 
$ brew install hashicorp/tap/terraform



On Windows, if you’re a Chocolatey user, you can run the following:

$ choco install terraform

Check the Terraform documentation for installation instructions on other
operating systems, including the various flavors of Linux.

Alternatively, you can install Terraform manually by going to the Terraform
home page, clicking the download link, selecting the appropriate package
for your operating system, downloading the ZIP archive, and unzipping it
into the directory where you want Terraform to be installed. The archive
will extract a single binary called terraform, which you’ll want to add to
your PATH environment variable.

To check whether things are working, run the terraform command, and
you should see the usage instructions:

$ terraform 
Usage: terraform [global options] <subcommand> [args] 
 
The available commands for execution are listed below. 
The primary workflow commands are given first, followed by 
less common or more advanced commands. 
 
Main commands: 
  init          Prepare your working directory for other commands 
  validate      Check whether the configuration is valid 
  plan          Show changes required by the current 
configuration 
  apply         Create or update infrastructure 
  destroy       Destroy previously-created infrastructure 
 
(...)

For Terraform to be able to make changes in your AWS account, you will
need to set the AWS credentials for the IAM user you created earlier as the
environment variables AWS_ACCESS_KEY_ID and
AWS_SECRET_ACCESS_KEY. For example, here is how you can do it in a
Unix/Linux/macOS terminal:

https://oreil.ly/xGjiS
https://www.terraform.io/


$ export AWS_ACCESS_KEY_ID=(your access key id) 
$ export AWS_SECRET_ACCESS_KEY=(your secret access key)

And here is how you can do it in a Windows command terminal:

$ set AWS_ACCESS_KEY_ID=(your access key id) 
$ set AWS_SECRET_ACCESS_KEY=(your secret access key)

Note that these environment variables apply only to the current shell, so if
you reboot your computer or open a new terminal window, you’ll need to
export these variables again.

OTHER AWS AUTHENTICATION OPTIONS
In addition to environment variables, Terraform supports the same authentication
mechanisms as all AWS CLI and SDK tools. Therefore, it’ll also be able to use
credentials in $HOME/.aws/credentials, which are automatically generated if you run
aws configure, or IAM roles, which you can add to almost any resource in AWS.
For more info, see A Comprehensive Guide to Authenticating to AWS on the Command
Line. You’ll also see more information on authenticating to Terraform providers in
Chapter 6.

Deploying a Single Server
Terraform code is written in the HashiCorp Configuration Language (HCL)
in files with the extension .tf.  It is a declarative language, so your goal is to
describe the infrastructure you want, and Terraform will figure out how to
create it. Terraform can create infrastructure across a wide variety of
platforms, or what it calls providers, including AWS, Azure, Google Cloud,
DigitalOcean, and many others.

You can write Terraform code in just about any text editor. If you search
around, you can find Terraform syntax highlighting support for most editors
(note that you may have to search for the word HCL instead of Terraform),
including vim, emacs, Sublime Text, Atom, Visual Studio Code, and IntelliJ
(the latter even has support for refactoring, find usages, and go to
declaration).
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The first step to using Terraform is typically to configure the provider(s)
you want to use. Create an empty folder and put a file in it called main.tf
that contains the following contents:

provider "aws" {
  region = "us-east-2"
}

This tells Terraform that you are going to be using AWS as your provider
and that you want to deploy your infrastructure into the us-east-2
region. AWS has datacenters all over the world, grouped into regions. An
AWS region is a separate geographic area, such as us-east-2 (Ohio),
eu-west-1 (Ireland), and ap-southeast-2 (Sydney). Within each
region, there are multiple isolated datacenters known as Availability Zones
(AZs), such as us-east-2a, us-east-2b, and so on.  There are many
other settings you can configure on this provider, but for now, let’s keep it
simple, and we’ll take a deeper look at provider configuration in Chapter 7.

For each type of provider, there are many different kinds of resources that
you can create, such as servers, databases, and load balancers. The general
syntax for creating a resource in Terraform is as follows:

resource "<PROVIDER>_<TYPE>" "<NAME>" { 
  [CONFIG ...]
}

where PROVIDER is the name of a provider (e.g., aws), TYPE is the type
of resource to create in that provider (e.g., instance), NAME is an
identifier you can use throughout the Terraform code to refer to this
resource (e.g., my_instance), and CONFIG consists of one or more
arguments that are specific to that resource.

For example, to deploy a single (virtual) server in AWS, known as an EC2
Instance, use the aws_instance resource in main.tf as follows:

resource "aws_instance" "example" {
  ami           = "ami-0fb653ca2d3203ac1"
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  instance_type = "t2.micro"
}

The aws_instance resource supports many different arguments, but for
now, you only need to set the two required ones:

ami

The Amazon Machine Image (AMI) to run on the EC2 Instance. You
can find free and paid AMIs in the AWS Marketplace or create your
own using tools such as Packer. The preceding code sets the ami
parameter to the ID of an Ubuntu 20.04 AMI in us-east-2. This
AMI is free to use. Please note that AMI IDs are different in every AWS
region, so if you change the region parameter to something other than
us-east-2, you’ll need to manually look up the corresponding
Ubuntu AMI ID for that region,  and copy it into the ami parameter. In
Chapter 7, you’ll see how to fetch the AMI ID completely
automatically.

instance_type

The type of EC2 Instance to run. Each type of EC2 Instance provides a
different amount of CPU, memory, disk space, and networking capacity.
The EC2 Instance Types page lists all the available options. The
preceding example uses t2.micro, which has one virtual CPU, 1 GB
of memory, and is part of the AWS Free Tier.

USE THE DOCS!
Terraform supports dozens of providers, each of which supports dozens of resources,
and each resource has dozens of arguments. There is no way to remember them all.
When you’re writing Terraform code, you should be regularly referring to the Terraform
documentation to look up what resources are available and how to use each one. For
example, here’s the documentation for the aws_instance resource. I’ve been using
Terraform for years, and I still refer to these docs multiple times per day!

9
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In a terminal, go into the folder where you created main.tf and run the
terraform init command:

$ terraform init 
 
Initializing the backend... 
 
Initializing provider plugins... 
- Reusing previous version of hashicorp/aws from the dependency 
lock file 
- Using hashicorp/aws v4.19.0 from the shared cache directory 
 
Terraform has been successfully initialized!

The terraform binary contains the basic functionality for Terraform, but
it does not come with the code for any of the providers (e.g., the AWS
Provider, Azure provider, GCP provider, etc.), so when you’re first starting
to use Terraform, you need to run terraform init to tell Terraform to
scan the code, figure out which providers you’re using, and download the
code for them. By default, the provider code will be downloaded into a
.terraform folder, which is Terraform’s scratch directory (you may want to
add it to .gitignore). Terraform will also record information about the
provider code it downloaded into a .terraform.lock.hcl file (you’ll learn
more about this file in “Versioned Modules”). You’ll see a few other uses
for the init command and .terraform folder in later chapters. For now,
just be aware that you need to run init anytime you start with new
Terraform code and that it’s safe to run init multiple times (the command
is idempotent).

Now that you have the provider code downloaded, run the terraform
plan command:

$ terraform plan 
 
(...) 
 
Terraform will perform the following actions: 
 
  # aws_instance.example will be created 



  + resource "aws_instance" "example" { 
      + ami                          = "ami-0fb653ca2d3203ac1" 
      + arn                          = (known after apply) 
      + associate_public_ip_address  = (known after apply) 
      + availability_zone            = (known after apply) 
      + cpu_core_count               = (known after apply) 
      + cpu_threads_per_core         = (known after apply) 
      + get_password_data            = false 
      + host_id                      = (known after apply) 
      + id                           = (known after apply) 
      + instance_state               = (known after apply) 
      + instance_type                = "t2.micro" 
      + ipv6_address_count           = (known after apply) 
      + ipv6_addresses               = (known after apply) 
      + key_name                     = (known after apply) 
      (...) 
  } 
 
Plan: 1 to add, 0 to change, 0 to destroy.

The plan command lets you see what Terraform will do before actually
making any changes. This is a great way to sanity-check your code before
unleashing it onto the world. The output of the plan command is similar to
the output of the diff command that is part of Unix, Linux, and git:
anything with a plus sign (+) will be created, anything with a minus sign (–)
will be deleted, and anything with a tilde sign (~) will be modified in place.
In the preceding output, you can see that Terraform is planning on creating
a single EC2 Instance and nothing else, which is exactly what you want.

To actually create the Instance, run the terraform apply command:

$ terraform apply 
 
(...) 
 
Terraform will perform the following actions: 
 
  # aws_instance.example will be created 
  + resource "aws_instance" "example" { 
      + ami                          = "ami-0fb653ca2d3203ac1" 
      + arn                          = (known after apply) 
      + associate_public_ip_address  = (known after apply) 
      + availability_zone            = (known after apply) 



      + cpu_core_count               = (known after apply) 
      + cpu_threads_per_core         = (known after apply) 
      + get_password_data            = false 
      + host_id                      = (known after apply) 
      + id                           = (known after apply) 
      + instance_state               = (known after apply) 
      + instance_type                = "t2.micro" 
      + ipv6_address_count           = (known after apply) 
      + ipv6_addresses               = (known after apply) 
      + key_name                     = (known after apply) 
      (...) 
  } 
 
Plan: 1 to add, 0 to change, 0 to destroy. 
 
Do you want to perform these actions? 
  Terraform will perform the actions described above. 
  Only 'yes' will be accepted to approve. 
 
  Enter a value:

You’ll notice that the apply command shows you the same plan output
and asks you to confirm whether you actually want to proceed with this
plan. So, while plan is available as a separate command, it’s mainly useful
for quick sanity checks and during code reviews (a topic you’ll see more of
in Chapter 10), and most of the time you’ll run apply directly and review
the plan output it shows you.

Type yes and hit Enter to deploy the EC2 Instance:

Do you want to perform these actions? 
  Terraform will perform the actions described above. 
  Only 'yes' will be accepted to approve. 
 
  Enter a value: yes 
 
aws_instance.example: Creating... 
aws_instance.example: Still creating... [10s elapsed] 
aws_instance.example: Still creating... [20s elapsed] 
aws_instance.example: Still creating... [30s elapsed] 
aws_instance.example: Creation complete after 38s [id=i-
07e2a3e006d785906] 
 
Apply complete! Resources: 1 added, 0 changed, 0 destroyed.



Congrats, you’ve just deployed an EC2 Instance in your AWS account
using Terraform! To verify this, head over to the EC2 console, and you
should see something similar to Figure 2-4.

https://amzn.to/2GOFxdI


Figure 2-4. The AWS Console shows the EC2 Instance you deployed.

Sure enough, the Instance is there, though admittedly, this isn’t the most
exciting example. Let’s make it a bit more interesting. First, notice that the



EC2 Instance doesn’t have a name. To add one, you can add tags to the
aws_instance resource:

resource "aws_instance" "example" {
  ami           = "ami-0fb653ca2d3203ac1"
  instance_type = "t2.micro" 
 
  tags = {
    Name = "terraform-example" 
  }
}

Run terraform apply again to see what this would do:

$ terraform apply 
 
aws_instance.example: Refreshing state... 
(...) 
 
Terraform will perform the following actions: 
 
  # aws_instance.example will be updated in-place 
  ~ resource "aws_instance" "example" { 
        ami                          = "ami-0fb653ca2d3203ac1" 
        availability_zone            = "us-east-2b" 
        instance_state               = "running" 
        (...) 
      + tags                         = { 
          + "Name" = "terraform-example" 
        } 
        (...) 
    } 
 
Plan: 0 to add, 1 to change, 0 to destroy. 
 
Do you want to perform these actions? 
  Terraform will perform the actions described above. 
  Only 'yes' will be accepted to approve. 
 
  Enter a value:

Terraform keeps track of all the resources it already created for this set of
configuration files, so it knows your EC2 Instance already exists (notice



Terraform says Refreshing state… when you run the apply
command), and it can show you a diff between what’s currently deployed
and what’s in your Terraform code (this is one of the advantages of using a
declarative language over a procedural one, as discussed in “How Does
Terraform Compare to Other IaC Tools?”). The preceding diff shows that
Terraform wants to create a single tag called Name, which is exactly what
you need, so type yes and hit Enter.

When you refresh your EC2 console, you’ll see something similar to
Figure 2-5.



Figure 2-5. The EC2 Instance now has a name tag.

Now that you have some working Terraform code, you may want to store it
in version control. This allows you to share your code with other team



members, track the history of all infrastructure changes, and use the commit
log for debugging. For example, here is how you can create a local Git
repository and use it to store your Terraform configuration file and the lock
file (you’ll learn all about the lock file in Chapter 8; for now, all you need to
know is it should be added to version control along with your code):

git init 
git add main.tf .terraform.lock.hcl 
git commit -m "Initial commit"

You should also create a .gitignore file with the following contents:

.terraform 
*.tfstate 
*.tfstate.backup

The preceding .gitignore file instructs Git to ignore the .terraform folder,
which Terraform uses as a temporary scratch directory, as well as *.tfstate
files, which Terraform uses to store state (in Chapter 3, you’ll see why state
files shouldn’t be checked in). You should commit the .gitignore file, too:

git add .gitignore 
git commit -m "Add a .gitignore file"

To share this code with your teammates, you’ll want to create a shared Git
repository that you can all access. One way to do this is to use GitHub.
Head over to GitHub, create an account if you don’t have one already, and
create a new repository. Configure your local Git repository to use the new
GitHub repository as a remote endpoint named origin, as follows:

git remote add origin git@github.com:
<YOUR_USERNAME>/<YOUR_REPO_NAME>.git

Now, whenever you want to share your commits with your teammates, you
can push them to origin:

git push origin main

https://github.com/


And whenever you want to see changes your teammates have made, you
can pull them from origin:

git pull origin main

As you go through the rest of this book, and as you use Terraform in
general, make sure to regularly git commit and git push your
changes. This way, you’ll not only be able to collaborate with team
members on this code, but all of your infrastructure changes will also be
captured in the commit log, which is very handy for debugging. You’ll learn
more about using Terraform as a team in Chapter 10.

Deploying a Single Web Server
The next step is to run a web server on this Instance. The goal is to deploy
the simplest web architecture possible: a single web server that can respond
to HTTP requests, as shown in Figure 2-6.



Figure 2-6. Start with a simple architecture: a single web server running in AWS that responds to
HTTP requests.

In a real-world use case, you’d probably build the web server using a web
framework like Ruby on Rails or Django, but to keep this example simple,
let’s run a dirt-simple web server that always returns the text “Hello,
World”:

#!/bin/bash
echo "Hello, World" > index.xhtml 
nohup busybox httpd -f -p 8080 &

This is a Bash script that writes the text “Hello, World” into index.xhtml and
runs a tool called busybox (which is installed by default on Ubuntu) to
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fire up a web server on port 8080 to serve that file. I wrapped the busybox
command with nohup and an ampersand (&) so that the web server runs
permanently in the background, whereas the Bash script itself can exit.

PORT NUMBERS
The reason this example uses port 8080, rather than the default HTTP port 80, is that
listening on any port less than 1024 requires root user privileges. This is a security risk
since any attacker who manages to compromise your server would get root privileges,
too.

Therefore, it’s a best practice to run your web server with a non-root user that has
limited permissions. That means you have to listen on higher-numbered ports, but as
you’ll see later in this chapter, you can configure a load balancer to listen on port 80 and
route traffic to the high-numbered ports on your server(s).

How do you get the EC2 Instance to run this script? Normally, as discussed
in “Server Templating Tools”, you would use a tool like Packer to create a
custom AMI that has the web server installed on it. Since the dummy web
server in this example is just a one-liner that uses busybox, you can use a
plain Ubuntu 20.04 AMI and run the “Hello, World” script as part of the
EC2 Instance’s User Data configuration. When you launch an EC2
Instance, you have the option of passing either a shell script or cloud-init
directive to User Data, and the EC2 Instance will execute it during its very
first boot. You pass a shell script to User Data by setting the user_data
argument in your Terraform code as follows:

resource "aws_instance" "example" {
  ami                    = "ami-0fb653ca2d3203ac1"
  instance_type          = "t2.micro" 
 
  user_data = <<-EOF
              #!/bin/bash 
              echo "Hello, World" > index.xhtml 
              nohup busybox httpd -f -p 8080 & 
              EOF 
 
  user_data_replace_on_change = true 
 



  tags = {
    Name = "terraform-example" 
  }
}

Two things to notice about the preceding code:

The <<-EOF and EOF are Terraform’s heredoc syntax, which allows
you to create multiline strings without having to insert \n characters
all over the place.

The user_data_replace_on_change parameter is set to true
so that when you change the user_data parameter and run apply,
Terraform will terminate the original instance and launch a totally new
one. Terraform’s default behavior is to update the original instance in
place, but since User Data runs only on the very first boot, and your
original instance already went through that boot process, you need to
force the creation of a new instance to ensure your new User Data
script actually gets executed.

You need to do one more thing before this web server works. By default,
AWS does not allow any incoming or outgoing traffic from an EC2
Instance. To allow the EC2 Instance to receive traffic on port 8080, you
need to create a security group:

resource "aws_security_group" "instance" {
  name = "terraform-example-instance" 
 
  ingress {
    from_port   = 8080
    to_port     = 8080
    protocol    = "tcp"
    cidr_blocks = ["0.0.0.0/0"] 
  }
}

This code creates a new resource called aws_security_group (notice
how all resources for the AWS Provider begin with aws_) and specifies
that this group allows incoming TCP requests on port 8080 from the CIDR



block 0.0.0.0/0. CIDR blocks are a concise way to specify IP address
ranges. For example, a CIDR block of 10.0.0.0/24 represents all IP
addresses between 10.0.0.0 and 10.0.0.255. The CIDR block 0.0.0.0/0 is an
IP address range that includes all possible IP addresses, so this security
group allows incoming requests on port 8080 from any IP.

Simply creating a security group isn’t enough; you need to tell the EC2
Instance to actually use it by passing the ID of the security group into the
vpc_security _group_ids argument of the aws_instance
resource. To do that, you first need to learn about Terraform expressions.

An expression in Terraform is anything that returns a value. You’ve already
seen the simplest type of expressions, literals, such as strings (e.g., "ami-
0fb653ca2d3203ac1") and numbers (e.g., 5). Terraform supports
many other types of expressions that you’ll see throughout the book.

One particularly useful type of expression is a reference, which allows you
to access values from other parts of your code. To access the ID of the
security group resource, you are going to need to use a resource attribute
reference, which uses the following syntax:

<PROVIDER>_<TYPE>.<NAME>.<ATTRIBUTE>

where PROVIDER is the name of the provider (e.g., aws), TYPE is the type
of resource (e.g., security_group), NAME is the name of that resource
(e.g., the security group is named "instance"), and ATTRIBUTE is
either one of the arguments of that resource (e.g., name) or one of the
attributes exported by the resource (you can find the list of available
attributes in the documentation for each resource). The security group
exports an attribute called id, so the expression to reference it will look
like this:

aws_security_group.instance.id

You can use this security group ID in the vpc_security_group_ids
argument of the aws_instance as follows:
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resource "aws_instance" "example" {
  ami                    = "ami-0fb653ca2d3203ac1"
  instance_type          = "t2.micro"
  vpc_security_group_ids = [aws_security_group.instance.id] 
 
  user_data = <<-EOF
              #!/bin/bash 
              echo "Hello, World" > index.xhtml 
              nohup busybox httpd -f -p 8080 & 
              EOF 
 
  user_data_replace_on_change = true 
 
  tags = {
    Name = "terraform-example" 
  }
}

When you add a reference from one resource to another, you create an
implicit dependency. Terraform parses these dependencies, builds a
dependency graph from them, and uses that to automatically determine in
which order it should create resources. For example, if you were deploying
this code from scratch, Terraform would know that it needs to create the
security group before the EC2 Instance, because the EC2 Instance
references the ID of the security group. You can even get Terraform to show
you the dependency graph by running the graph command:

$ terraform graph 
 
digraph { 
 compound = "true" 
 newrank = "true" 
 subgraph "root" { 
  "[root] aws_instance.example" 
    [label = "aws_instance.example", shape = "box"] 
  "[root] aws_security_group.instance" 
    [label = "aws_security_group.instance", shape = 
"box"] 
  "[root] provider.aws" 
    [label = "provider.aws", shape = "diamond"] 
  "[root] aws_instance.example" -> 
    "[root] aws_security_group.instance" 
  "[root] aws_security_group.instance" -> 
    "[root] provider.aws" 



  "[root] meta.count-boundary (EachMode fixup)" -> 
    "[root] aws_instance.example" 
  "[root] provider.aws (close)" -> 
    "[root] aws_instance.example" 
  "[root] root" -> 
    "[root] meta.count-boundary (EachMode fixup)" 
  "[root] root" -> 
    "[root] provider.aws (close)" 
 } 
}

The output is in a graph description language called DOT, which you can
turn into an image, similar to the dependency graph shown in Figure 2-7, by
using a desktop app such as Graphviz or web app like GraphvizOnline.12

https://bit.ly/2mPbxmg


Figure 2-7. This is what the dependency graph for the EC2 Instance and its security group looks like
when rendered with Graphviz.

When Terraform walks your dependency tree, it creates as many resources
in parallel as it can, which means that it can apply your changes fairly
efficiently. That’s the beauty of a declarative language: you just specify



what you want, and Terraform determines the most efficient way to make it
happen.

If you run the apply command, you’ll see that Terraform wants to create a
security group and replace the EC2 Instance with a new one that has the
new user data:

$ terraform apply 
 
(...) 
 
Terraform will perform the following actions: 
 
  # aws_instance.example must be replaced 
-/+ resource "aws_instance" "example" { 
        ami                          = "ami-0fb653ca2d3203ac1" 
      ~ availability_zone            = "us-east-2c" -> (known 
after apply) 
      ~ instance_state               = "running" -> (known after 
apply) 
        instance_type                = "t2.micro" 
        (...) 
      + user_data                    = "c765373..." # forces 
replacement 
      ~ volume_tags                  = {} -> (known after apply) 
      ~ vpc_security_group_ids       = [ 
          - "sg-871fa9ec", 
        ] -> (known after apply) 
        (...) 
    } 
 
  # aws_security_group.instance will be created 
  + resource "aws_security_group" "instance" { 
      + arn                    = (known after apply) 
      + description            = "Managed by Terraform" 
      + egress                 = (known after apply) 
      + id                     = (known after apply) 
      + ingress                = [ 
          + { 
              + cidr_blocks      = [ 
                  + "0.0.0.0/0", 
                ] 
              + description      = "" 
              + from_port        = 8080 
              + ipv6_cidr_blocks = [] 
              + prefix_list_ids  = [] 



              + protocol         = "tcp" 
              + security_groups  = [] 
              + self             = false 
              + to_port          = 8080 
            }, 
        ] 
      + name                   = "terraform-example-instance" 
      + owner_id               = (known after apply) 
      + revoke_rules_on_delete = false 
      + vpc_id                 = (known after apply) 
    } 
 
Plan: 2 to add, 0 to change, 1 to destroy. 
 
Do you want to perform these actions? 
  Terraform will perform the actions described above. 
  Only 'yes' will be accepted to approve. 
 
  Enter a value:

The -/+ in the plan output means “replace”; look for the text “forces
replacement” in the plan output to figure out what is forcing Terraform to
do a replacement. Since you set user_data_replace_on_change to
true and changed the user_data parameter, this will force a
replacement, which means that the original EC2 Instance will be terminated
and a completely new Instance will be created. This is an example of the
immutable infrastructure paradigm discussed in “Server Templating Tools”.
It’s worth mentioning that while the web server is being replaced, any users
of that web server would experience downtime; you’ll see how to do a zero-
downtime deployment with Terraform in Chapter 5.

Since the plan looks good, enter yes, and you’ll see your new EC2
Instance deploying, as shown in Figure 2-8.



Figure 2-8. The new EC2 Instance with the web server code replaces the old Instance.

If you click your new Instance, you can find its public IP address in the
description panel at the bottom of the screen. Give the Instance a minute or



two to boot up, and then use a web browser or a tool like curl to make an
HTTP request to this IP address at port 8080:

$ curl http://<EC2_INSTANCE_PUBLIC_IP>:8080 
Hello, World

Yay! You now have a working web server running in AWS!

NETWORK SECURITY
To keep all of the examples in this book simple, they deploy not only
into your Default VPC (as mentioned earlier) but also into the default
subnets of that VPC. A VPC is partitioned into one or more subnets,
each with its own IP addresses. The subnets in the Default VPC are all
public subnets, which means they get IP addresses that are accessible
from the public internet. This is why you are able to test your EC2
Instance from your home computer.

Running a server in a public subnet is fine for a quick experiment, but
in real-world usage, it’s a security risk. Hackers all over the world are
constantly scanning IP addresses at random for any weakness. If your
servers are exposed publicly, all it takes is accidentally leaving a single
port unprotected or running out-of-date code with a known
vulnerability, and someone can break in.

Therefore, for production systems, you should deploy all of your
servers, and certainly all of your data stores, in private subnets, which
have IP addresses that can be accessed only from within the VPC and
not from the public internet. The only servers you should run in public
subnets are a small number of reverse proxies and load balancers that
you lock down as much as possible (you’ll see an example of how to
deploy a load balancer later in this chapter).

Deploying a Configurable Web Server



You might have noticed that the web server code has the port 8080
duplicated in both the security group and the User Data configuration. This
violates the Don’t Repeat Yourself (DRY) principle: every piece of
knowledge must have a single, unambiguous, authoritative representation
within a system.  If you have the port number in two places, it’s easy to
update it in one place but forget to make the same change in the other place.

To allow you to make your code more DRY and more configurable,
Terraform allows you to define input variables. Here’s the syntax for
declaring a variable:

variable "NAME" { 
  [CONFIG ...]
}

The body of the variable declaration can contain the following optional
parameters:

description

It’s always a good idea to use this parameter to document how a
variable is used. Your teammates will be able to see this description not
only while reading the code but also when running the plan or apply
commands (you’ll see an example of this shortly).

default

There are a number of ways to provide a value for the variable,
including passing it in at the command line (using the -var option), via
a file (using the -var-file option), or via an environment variable
(Terraform looks for environment variables of the name
TF_VAR_<variable_name>). If no value is passed in, the variable
will fall back to this default value. If there is no default value, Terraform
will interactively prompt the user for one.

type
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This allows you to enforce type constraints on the variables a user
passes in. Terraform supports a number of type constraints, including
string, number, bool, list, map, set, object, tuple, and
any. It’s always a good idea to define a type constraint to catch simple
errors. If you don’t specify a type, Terraform assumes the type is any.

validation

This allows you to define custom validation rules for the input variable
that go beyond basic type checks, such as enforcing minimum or
maximum values on a number. You’ll see an example of validations in
Chapter 8.

sensitive

If you set this parameter to true on an input variable, Terraform will
not log it when you run plan or apply. You should use this on any
secrets you pass into your Terraform code via variables: e.g., passwords,
API keys, etc. I’ll talk more about secrets in Chapter 6.

Here is an example of an input variable that checks to verify that the value
you pass in is a number:

variable "number_example" {
  description = "An example of a number variable in Terraform"
  type        = number
  default     = 42
}

And here’s an example of a variable that checks whether the value is a list:

variable "list_example" {
  description = "An example of a list in Terraform"
  type        = list
  default     = ["a", "b", "c"]
}



You can combine type constraints, too. For example, here’s a list input
variable that requires all of the items in the list to be numbers:

variable "list_numeric_example" {
  description = "An example of a numeric list in Terraform"
  type        = list(number)
  default     = [1, 2, 3]
}

And here’s a map that requires all of the values to be strings:

variable "map_example" {
  description = "An example of a map in Terraform"
  type        = map(string) 
 
  default = {
    key1 = "value1"
    key2 = "value2"
    key3 = "value3" 
  }
}

You can also create more complicated structural types using the object
type constraint:

variable "object_example" {
  description = "An example of a structural type in Terraform"
  type        = object({
    name    = string
    age     = number
    tags    = list(string)
    enabled = bool 
  }) 
 
  default = {
    name    = "value1"
    age     = 42
    tags    = ["a", "b", "c"]
    enabled = true 
  }
}



The preceding example creates an input variable that will require the value
to be an object with the keys name (which must be a string), age (which
must be a number), tags (which must be a list of strings), and enabled
(which must be a Boolean). If you try to set this variable to a value that
doesn’t match this type, Terraform immediately gives you a type error. The
following example demonstrates trying to set enabled to a string instead
of a Boolean:

variable "object_example_with_error" {
  description = "An example of a structural type in Terraform 
with an error"
  type        = object({
    name    = string
    age     = number
    tags    = list(string)
    enabled = bool 
  }) 
 
  default = {
    name    = "value1"
    age     = 42
    tags    = ["a", "b", "c"]
    enabled = "invalid" 
  }
}

You get the following error:

$ terraform apply 
 
Error: Invalid default value for variable 
 
  on variables.tf line 78, in variable 
"object_example_with_error": 
  78:   default = { 
  79:     name    = "value1" 
  80:     age     = 42 
  81:     tags    = ["a", "b", "c"] 
  82:     enabled = "invalid" 
  83:   } 
 
This default value is not compatible with the variable's type 



constraint: a 
bool is required.

Coming back to the web server example, what you need is a variable that
stores the port number:

variable "server_port" {
  description = "The port the server will use for HTTP requests"
  type        = number
}

Note that the server_port input variable has no default, so if you
run the apply command now, Terraform will interactively prompt you to
enter a value for server_port and show you the description of the
variable:

$ terraform apply 
 
var.server_port 
  The port the server will use for HTTP requests 
 
  Enter a value:

If you don’t want to deal with an interactive prompt, you can provide a
value for the variable via the -var command-line option:

$ terraform plan -var "server_port=8080"

You could also set the variable via an environment variable named
TF_VAR_<name>, where <name> is the name of the variable you’re
trying to set:

$ export TF_VAR_server_port=8080 
$ terraform plan

And if you don’t want to deal with remembering extra command-line
arguments every time you run plan or apply, you can specify a
default value:



variable "server_port" {
  description = "The port the server will use for HTTP requests"
  type        = number
  default     = 8080
}

To use the value from an input variable in your Terraform code, you can use
a new type of expression called a variable reference, which has the
following syntax:

var.<VARIABLE_NAME>

For example, here is how you can set the from_port and to_port
parameters of the security group to the value of the server_port
variable:

resource "aws_security_group" "instance" {
  name = "terraform-example-instance" 
 
  ingress {
    from_port   = var.server_port
    to_port     = var.server_port
    protocol    = "tcp"
    cidr_blocks = ["0.0.0.0/0"] 
  }
}

It’s also a good idea to use the same variable when setting the port in the
User Data script. To use a reference inside of a string literal, you need to
use a new type of expression called an interpolation, which has the
following syntax:

"${...}"

You can put any valid reference within the curly braces, and Terraform will
convert it to a string. For example, here’s how you can use
var.server_port inside of the User Data string:



  user_data = <<-EOF
              #!/bin/bash 
              echo "Hello, World" > index.xhtml 
              nohup busybox httpd -f -p ${var.server_port} & 
              EOF

In addition to input variables, Terraform also allows you to define output
variables by using the following syntax:

output "<NAME>" {
  value = <VALUE> 
  [CONFIG ...]
}

The NAME is the name of the output variable, and VALUE can be any
Terraform expression that you would like to output. The CONFIG can
contain the following optional parameters:

description

It’s always a good idea to use this parameter to document what type of
data is contained in the output variable.

sensitive

Set this parameter to true to instruct Terraform not to log this output at
the end of plan or apply. This is useful if the output variable
contains secrets such as passwords or private keys. Note that if your
output variable references an input variable or resource attribute marked
with sensitive = true, you are required to mark the output
variable with sensitive = true as well to indicate you are
intentionally outputting a secret.

depends_on

Normally, Terraform automatically figures out your dependency graph
based on the references within your code, but in rare situations, you
have to give it extra hints. For example, perhaps you have an output
variable that returns the IP address of a server, but that IP won’t be



accessible until a security group (firewall) is properly configured for
that server. In that case, you may explicitly tell Terraform there is a
dependency between the IP address output variable and the security
group resource using depends_on.

For example, instead of having to manually poke around the EC2 console to
find the IP address of your server, you can provide the IP address as an
output variable:

output "public_ip" {
  value       = aws_instance.example.public_ip
  description = "The public IP address of the web server"
}

This code uses an attribute reference again, this time referencing the
public_ip attribute of the aws_instance resource. If you run the
apply command again, Terraform will not apply any changes (because
you haven’t changed any resources), but it will show you the new output at
the very end:

$ terraform apply 
 
(...) 
 
aws_security_group.instance: Refreshing state... [id=sg-
078ccb4f9533d2c1a] 
aws_instance.example: Refreshing state... [id=i-
028cad2d4e6bddec6] 
 
Apply complete! Resources: 0 added, 0 changed, 0 destroyed. 
 
Outputs: 
 
public_ip = "54.174.13.5"

As you can see, output variables show up in the console after you run
terraform apply, which users of your Terraform code might find
useful (e.g., you now know what IP to test after the web server is deployed).



You can also use the terraform output command to list all outputs
without applying any changes:

$ terraform output 
public_ip = "54.174.13.5"

And you can run terraform output <OUTPUT_NAME> to see the
value of a specific output called <OUTPUT_NAME>:

$ terraform output public_ip 
"54.174.13.5"

This is particularly handy for scripting. For example, you could create a
deployment script that runs terraform apply to deploy the web server,
uses terraform output public_ip to grab its public IP, and runs
curl on the IP as a quick smoke test to validate that the deployment
worked.

Input and output variables are also essential ingredients in creating
configurable and reusable infrastructure code, a topic you’ll see more of in
Chapter 4.

Deploying a Cluster of Web Servers
Running a single server is a good start, but in the real world, a single server
is a single point of failure. If that server crashes, or if it becomes overloaded
from too much traffic, users will be unable to access your site. The solution
is to run a cluster of servers, routing around servers that go down and
adjusting the size of the cluster up or down based on traffic.

Managing such a cluster manually is a lot of work. Fortunately, you can let
AWS take care of it for you by using an Auto Scaling Group (ASG), as
shown in Figure 2-9. An ASG takes care of a lot of tasks for you
completely automatically, including launching a cluster of EC2 Instances,
monitoring the health of each Instance, replacing failed Instances, and
adjusting the size of the cluster in response to load.
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Figure 2-9. Instead of a single web server, run a cluster of web servers using an Auto Scaling Group.

The first step in creating an ASG is to create a launch configuration, which
specifies how to configure each EC2 Instance in the ASG.  The15



aws_launch_configuration resource uses almost the same
parameters as the aws_instance resource, although it doesn’t
support tags (you’ll handle these in the aws_autoscaling_group
resource later) or the user_data_replace_on_change parameter
(ASGs launch new instances by default, so you don’t need this parameter),
and two of the parameters have different names (ami is now image_id,
and vpc_security_group_ids is now security_groups), so
replace aws_instance with aws_launch_configuration as
follows:

resource "aws_launch_configuration" "example" {
  image_id        = "ami-0fb653ca2d3203ac1"
  instance_type   = "t2.micro"
  security_groups = [aws_security_group.instance.id] 
 
  user_data = <<-EOF
              #!/bin/bash 
              echo "Hello, World" > index.xhtml 
              nohup busybox httpd -f -p ${var.server_port} & 
              EOF
}

Now you can create the ASG itself using the
aws_autoscaling_group resource:

resource "aws_autoscaling_group" "example" {
  launch_configuration = aws_launch_configuration.example.name 
 
  min_size = 2
  max_size = 10 
 
  tag {
    key                 = "Name"
    value               = "terraform-asg-example"
    propagate_at_launch = true 
  }
}

This ASG will run between 2 and 10 EC2 Instances (defaulting to 2 for the
initial launch), each tagged with the name terraform-asg-example.



Note that the ASG uses a reference to fill in the launch configuration name.
This leads to a problem: launch configurations are immutable, so if you
change any parameter of your launch configuration, Terraform will try to
replace it. Normally, when replacing a resource, Terraform would delete the
old resource first and then creates its replacement, but because your ASG
now has a reference to the old resource, Terraform won’t be able to delete
it.

To solve this problem, you can use a lifecycle setting. Every Terraform
resource supports several lifecycle settings that configure how that resource
is created, updated, and/or deleted. A particularly useful lifecycle setting is
create_before_destroy. If you set create_before_destroy
to true, Terraform will invert the order in which it replaces resources,
creating the replacement resource first (including updating any references
that were pointing at the old resource to point to the replacement) and then
deleting the old resource. Add the lifecycle block to your
aws_launch _configuration as follows:

resource "aws_launch_configuration" "example" {
  image_id        = "ami-0fb653ca2d3203ac1"
  instance_type   = "t2.micro"
  security_groups = [aws_security_group.instance.id] 
 
  user_data = <<-EOF
              #!/bin/bash 
              echo "Hello, World" > index.xhtml 
              nohup busybox httpd -f -p ${var.server_port} & 
              EOF 
 
  # Required when using a launch configuration with an auto 
scaling group. 
  lifecycle {
    create_before_destroy = true 
  }
}

There’s also one other parameter that you need to add to your ASG to make
it work: subnet_ids. This parameter specifies to the ASG into which
VPC subnets the EC2 Instances should be deployed (see “Network



Security” for background info on subnets). Each subnet lives in an isolated
AWS AZ (that is, isolated datacenter), so by deploying your Instances
across multiple subnets, you ensure that your service can keep running even
if some of the datacenters have an outage. You could hardcode the list of
subnets, but that won’t be maintainable or portable, so a better option is to
use data sources to get the list of subnets in your AWS account.

A data source represents a piece of read-only information that is fetched
from the provider (in this case, AWS) every time you run Terraform.
Adding a data source to your Terraform configurations does not create
anything new; it’s just a way to query the provider’s APIs for data and to
make that data available to the rest of your Terraform code. Each Terraform
provider exposes a variety of data sources. For example, the AWS Provider
includes data sources to look up VPC data, subnet data, AMI IDs, IP
address ranges, the current user’s identity, and much more.

The syntax for using a data source is very similar to the syntax of a
resource:

data "<PROVIDER>_<TYPE>" "<NAME>" { 
  [CONFIG ...]
}

Here, PROVIDER is the name of a provider (e.g., aws), TYPE is the type of
data source you want to use (e.g., vpc), NAME is an identifier you can use
throughout the Terraform code to refer to this data source, and CONFIG
consists of one or more arguments that are specific to that data source. For
example, here is how you can use the aws_vpc data source to look up the
data for your Default VPC (see “A Note on Default Virtual Private Clouds”
for background information):

data "aws_vpc" "default" {
  default = true
}

Note that with data sources, the arguments you pass in are typically search
filters that indicate to the data source what information you’re looking for.



With the aws_vpc data source, the only filter you need is default =
true, which directs Terraform to look up the Default VPC in your AWS
account.

To get the data out of a data source, you use the following attribute
reference syntax:

data.<PROVIDER>_<TYPE>.<NAME>.<ATTRIBUTE>

For example, to get the ID of the VPC from the aws_vpc data source, you
would use the following:

data.aws_vpc.default.id

You can combine this with another data source, aws_subnets, to look up
the subnets

within that VPC:

data "aws_subnets" "default" { 
  filter {
    name   = "vpc-id"
    values = [data.aws_vpc.default.id] 
  }
}

Finally, you can pull the subnet IDs out of the aws_subnets data source
and tell your ASG to use those subnets via the (somewhat oddly named)
vpc_zone_identifier argument:

resource "aws_autoscaling_group" "example" {
  launch_configuration = aws_launch_configuration.example.name
  vpc_zone_identifier  = data.aws_subnets.default.ids 
 
  min_size = 2
  max_size = 10 
 
  tag {
    key                 = "Name"
    value               = "terraform-asg-example"



    propagate_at_launch = true 
  }
}

Deploying a Load Balancer
At this point, you can deploy your ASG, but you’ll have a small problem:
you now have multiple servers, each with its own IP address, but you
typically want to give your end users only a single IP to use. One way to
solve this problem is to deploy a load balancer to distribute traffic across
your servers and to give all your users the IP (actually, the DNS name) of
the load balancer. Creating a load balancer that is highly available and
scalable is a lot of work. Once again, you can let AWS take care of it for
you, this time by using Amazon’s Elastic Load Balancer (ELB) service, as
shown in Figure 2-10.



Figure 2-10. Use Amazon ELB to distribute traffic across the Auto Scaling Group.

AWS offers three types of load balancers:

Application Load Balancer (ALB)



Best suited for load balancing of HTTP and HTTPS traffic. Operates at
the application layer (Layer 7) of the Open Systems Interconnection
(OSI) model.

Network Load Balancer (NLB)

Best suited for load balancing of TCP, UDP, and TLS traffic. Can scale
up and down in response to load faster than the ALB (the NLB is
designed to scale to tens of millions of requests per second). Operates at
the transport layer (Layer 4) of the OSI model.

Classic Load Balancer (CLB)

This is the “legacy” load balancer that predates both the ALB and NLB.
It can handle HTTP, HTTPS, TCP, and TLS traffic but with far fewer
features than either the ALB or NLB. Operates at both the application
layer (L7) and transport layer (L4) of the OSI model.

Most applications these days should use either the ALB or the NLB.
Because the simple web server example you’re working on is an HTTP app
without any extreme performance requirements, the ALB is going to be the
best fit.

The ALB consists of several parts, as shown in Figure 2-11:

Listener

Listens on a specific port (e.g., 80) and protocol (e.g., HTTP).

Listener rule

Takes requests that come into a listener and sends those that match
specific paths (e.g., /foo and /bar) or hostnames (e.g.,
foo.example.com and bar.example.com) to specific target
groups.

Target groups



One or more servers that receive requests from the load balancer. The
target group also performs health checks on these servers and sends
requests only to healthy nodes.

Figure 2-11. An ALB consists of listeners, listener rules, and target groups.

The first step is to create the ALB itself using the aws_lb resource:

resource "aws_lb" "example" {
  name               = "terraform-asg-example"
  load_balancer_type = "application"
  subnets            = data.aws_subnets.default.ids
}

Note that the subnets parameter configures the load balancer to use all
the subnets in your Default VPC by using the aws_subnets data
source.  AWS load balancers don’t consist of a single server, but of
multiple servers that can run in separate subnets (and, therefore, separate
datacenters). AWS automatically scales the number of load balancer servers
up and down based on traffic and handles failover if one of those servers
goes down, so you get scalability and high availability out of the box.
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The next step is to define a listener for this ALB using the
aws_lb_listener resource:

resource "aws_lb_listener" "http" {
  load_balancer_arn = aws_lb.example.arn
  port              = 80
  protocol          = "HTTP" 
 
  # By default, return a simple 404 page 
  default_action {
    type = "fixed-response" 
 
    fixed_response {
      content_type = "text/plain"
      message_body = "404: page not found"
      status_code  = 404 
    } 
  }
}

This listener configures the ALB to listen on the default HTTP port, port
80, use HTTP as the protocol, and send a simple 404 page as the default
response for requests that don’t match any listener rules.

Note that, by default, all AWS resources, including ALBs, don’t allow any
incoming or outgoing traffic, so you need to create a new security group
specifically for the ALB. This security group should allow incoming
requests on port 80 so that you can access the load balancer over HTTP, and
allow outgoing requests on all ports so that the load balancer can perform
health checks:

resource "aws_security_group" "alb" {
  name = "terraform-example-alb" 
 
  # Allow inbound HTTP requests 
  ingress {
    from_port   = 80
    to_port     = 80
    protocol    = "tcp"
    cidr_blocks = ["0.0.0.0/0"] 
  } 
 



  # Allow all outbound requests 
  egress {
    from_port   = 0
    to_port     = 0
    protocol    = "-1"
    cidr_blocks = ["0.0.0.0/0"] 
  }
}

You’ll need to tell the aws_lb resource to use this security group via the
security_groups argument:

resource "aws_lb" "example" {
  name               = "terraform-asg-example"
  load_balancer_type = "application"
  subnets            = data.aws_subnets.default.ids
  security_groups    = [aws_security_group.alb.id]
}

Next, you need to create a target group for your ASG using the
aws_lb_target_group resource:

resource "aws_lb_target_group" "asg" {
  name     = "terraform-asg-example"
  port     = var.server_port
  protocol = "HTTP"
  vpc_id   = data.aws_vpc.default.id 
 
  health_check {
    path                = "/"
    protocol            = "HTTP"
    matcher             = "200"
    interval            = 15
    timeout             = 3
    healthy_threshold   = 2
    unhealthy_threshold = 2 
  }
}

This target group will health check your Instances by periodically sending
an HTTP request to each Instance and will consider the Instance “healthy”
only if the Instance returns a response that matches the configured



matcher (e.g., you can configure a matcher to look for a 200 OK
response). If an Instance fails to respond, perhaps because that Instance has
gone down or is overloaded, it will be marked as “unhealthy,” and the target
group will automatically stop sending traffic to it to minimize disruption for
your users.

How does the target group know which EC2 Instances to send requests to?
You could attach a static list of EC2 Instances to the target group using the
aws_lb_target_group_attachment resource, but with an ASG,
Instances can launch or terminate at any time, so a static list won’t work.
Instead, you can take advantage of the first-class integration between the
ASG and the ALB. Go back to the aws _autoscaling_group resource,
and set its target_group_arns argument to point at your new target
group:

resource "aws_autoscaling_group" "example" {
  launch_configuration = aws_launch_configuration.example.name
  vpc_zone_identifier  = data.aws_subnets.default.ids 
 
  target_group_arns = [aws_lb_target_group.asg.arn]
  health_check_type = "ELB" 
 
  min_size = 2
  max_size = 10 
 
  tag {
    key                 = "Name"
    value               = "terraform-asg-example"
    propagate_at_launch = true 
  }
}

You should also update the health_check_type to "ELB". The
default health_check_type is "EC2", which is a minimal health
check that considers an Instance unhealthy only if the AWS hypervisor says
the VM is completely down or unreachable. The "ELB" health check is
more robust, because it instructs the ASG to use the target group’s health
check to determine whether an Instance is healthy and to automatically
replace Instances if the target group reports them as unhealthy. That way,



Instances will be replaced not only if they are completely down but also if,
for example, they’ve stopped serving requests because they ran out of
memory or a critical process crashed.

Finally, it’s time to tie all these pieces together by creating listener rules
using the aws_lb_listener_rule resource:

resource "aws_lb_listener_rule" "asg" {
  listener_arn = aws_lb_listener.http.arn
  priority     = 100 
 
  condition { 
    path_pattern {
      values = ["*"] 
    } 
  } 
 
  action {
    type             = "forward"
    target_group_arn = aws_lb_target_group.asg.arn 
  }
}

The preceding code adds a listener rule that sends requests that match any
path to the target group that contains your ASG.

There’s one last thing to do before you deploy the load balancer—replace
the old public_ip output of the single EC2 Instance you had before with
an output that shows the DNS name of the ALB:

output "alb_dns_name" {
  value       = aws_lb.example.dns_name
  description = "The domain name of the load balancer"
}

Run terraform apply, and read through the plan output. You should
see that your original single EC2 Instance is being removed, and in its
place, Terraform will create a launch configuration, ASG, ALB, and a
security group. If the plan looks good, type yes and hit Enter. When
apply completes, you should see the alb_dns_name output:



Outputs: 
alb_dns_name = "terraform-asg-example-123.us-east-
2.elb.amazonaws.com"

Copy down this URL. It’ll take a couple minutes for the Instances to boot
and show up as healthy in the ALB. In the meantime, you can inspect what
you’ve deployed. Open up the ASG section of the EC2 console, and you
should see that the ASG has been created, as shown in Figure 2-12.

https://amzn.to/2MH3mId


Figure 2-12. The AWS Console shows all the ASGs you’ve created.

If you switch over to the Instances tab, you’ll see the two EC2 Instances
launching, as shown in Figure 2-13.



Figure 2-13. The EC2 Instances in the ASG are launching.

If you click the Load Balancers tab, you’ll see your ALB, as shown in
Figure 2-14.



Figure 2-14. The AWS Console shows all the ALBs you’ve created.

Finally, if you click the Target Groups tab, you can find your target group,
as shown in Figure 2-15.



Figure 2-15. The AWS Console shows all the target groups you’ve created.

If you click your target group and find the Targets tab in the bottom half of
the screen, you can see your Instances registering with the target group and



going through health checks. Wait for the Status indicator to indicate
“healthy” for both of them. This typically takes one to two minutes. When
you see it, test the alb_dns_name output you copied earlier:

$ curl http://<alb_dns_name> 
Hello, World

Success! The ALB is routing traffic to your EC2 Instances. Each time you
access the URL, it’ll pick a different Instance to handle the request. You
now have a fully working cluster of web servers!

At this point, you can see how your cluster responds to firing up new
Instances or shutting down old ones. For example, go to the Instances tab
and terminate one of the Instances by selecting its checkbox, clicking the
Actions button at the top, and then setting the Instance State to Terminate.
Continue to test the ALB URL, and you should get a 200 OK for each
request, even while terminating an Instance, because the ALB will
automatically detect that the Instance is down and stop routing to it. Even
more interesting, a short time after the Instance shuts down, the ASG will
detect that fewer than two Instances are running and automatically launch a
new one to replace it (self-healing!). You can also see how the ASG resizes
itself by adding a desired_capacity parameter to your Terraform
code and rerunning apply.

Cleanup
When you’re done experimenting with Terraform, either at the end of this
chapter, or at the end of future chapters, it’s a good idea to remove all of the
resources you created so that AWS doesn’t charge you for them. Because
Terraform keeps track of what resources you created, cleanup is simple. All
you need to do is run the destroy command:

$ terraform destroy 
 
(...) 
 



Terraform will perform the following actions: 
 
  # aws_autoscaling_group.example will be destroyed 
  - resource "aws_autoscaling_group" "example" { 
      (...) 
    } 
 
  # aws_launch_configuration.example will be destroyed 
  - resource "aws_launch_configuration" "example" { 
      (...) 
    } 
 
  # aws_lb.example will be destroyed 
  - resource "aws_lb" "example" { 
      (...) 
    } 
 
  (...) 
 
Plan: 0 to add, 0 to change, 8 to destroy. 
 
Do you really want to destroy all resources? 
  Terraform will destroy all your managed infrastructure, as 
shown above. 
  There is no undo. Only 'yes' will be accepted to confirm. 
 
  Enter a value:

It goes without saying that you should rarely, if ever, run destroy in a
production environment! There’s no “undo” for the destroy command, so
Terraform gives you one final chance to review what you’re doing, showing
you the list of all the resources you’re about to delete, and prompting you to
confirm the deletion. If everything looks good, type yes and hit Enter;
Terraform will build the dependency graph and delete all of the resources in
the correct order, using as much parallelism as possible. In a minute or two,
your AWS account should be clean again.

Note that later in the book, you will continue to develop this example, so
don’t delete the Terraform code! However, feel free to run destroy on the
actual deployed resources whenever you want. After all, the beauty of
infrastructure as code is that all of the information about those resources is
captured in code, so you can re-create all of them at any time with a single



command: terraform apply. In fact, you might want to commit your
latest changes to Git so that you can keep track of the history of your
infrastructure.

Conclusion
You now have a basic grasp of how to use Terraform. The declarative
language makes it easy to describe exactly the infrastructure you want to
create. The plan command allows you to verify your changes and catch
bugs before deploying them. Variables, references, and dependencies allow
you to remove duplication from your code and make it highly configurable.

However, you’ve only scratched the surface. In Chapter 3, you’ll learn how
Terraform keeps track of what infrastructure it has already created, and the
profound impact that has on how you should structure your Terraform code.
In Chapter 4, you’ll see how to create reusable infrastructure with
Terraform modules.
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Chapter 3. How to Manage
Terraform State

In Chapter 2, as you were using Terraform to create and update resources,
you might have noticed that every time you ran terraform plan or
terraform apply, Terraform was able to find the resources it created
previously and update them accordingly. But how did Terraform know
which resources it was supposed to manage? You could have all sorts of
infrastructure in your AWS account, deployed through a variety of
mechanisms (some manually, some via Terraform, some via the CLI), so
how does Terraform know which infrastructure it’s responsible for?

In this chapter, you’re going to see how Terraform tracks the state of your
infrastructure and the impact that has on file layout, isolation, and locking
in a Terraform project. Here are the key topics I’ll go over:

What is Terraform state?

Shared storage for state files

Limitations with Terraform’s backends

State file isolation

Isolation via workspaces

Isolation via file layout

The terraform_remote_state data source

EXAMPLE CODE
As a reminder, you can find all of the code examples in the book on GitHub.

https://github.com/brikis98/terraform-up-and-running-code


What Is Terraform State?
Every time you run Terraform, it records information about what
infrastructure it created in a Terraform state file. By default, when you run
Terraform in the folder /foo/bar, Terraform creates the file
/foo/bar/terraform.tfstate. This file contains a custom JSON format that
records a mapping from the Terraform resources in your configuration files
to the representation of those resources in the real world. For example, let’s
say your Terraform configuration contained the following:

resource "aws_instance" "example" {
  ami           = "ami-0fb653ca2d3203ac1"
  instance_type = "t2.micro"
}

After running terraform apply, here is a small snippet of the contents
of the terraform.tfstate file (truncated for readability):

{
  "version": 4,
  "terraform_version": "1.2.3",
  "serial": 1,
  "lineage": "86545604-7463-4aa5-e9e8-a2a221de98d2",
  "outputs": {},
  "resources": [
    {
      "mode": "managed",
      "type": "aws_instance",
      "name": "example",
      "provider": 
"provider[\"registry.terraform.io/hashicorp/aws\"]",
      "instances": [
        {
          "schema_version": 1,
          "attributes": {
            "ami": "ami-0fb653ca2d3203ac1",
            "availability_zone": "us-east-2b",
            "id": "i-0bc4bbe5b84387543",
            "instance_state": "running",
            "instance_type": "t2.micro",
            "(...)": "(truncated)"
          }



        }
      ]
    }
  ]
}

Using this JSON format, Terraform knows that a resource with type
aws_instance and name example corresponds to an EC2 Instance in
your AWS account with ID i-0bc4bbe5b84387543. Every time you
run Terraform, it can fetch the latest status of this EC2 Instance from AWS
and compare that to what’s in your Terraform configurations to determine
what changes need to be applied. In other words, the output of the plan
command is a diff between the code on your computer and the
infrastructure deployed in the real world, as discovered via IDs in the state
file.

THE STATE FILE IS A PRIVATE API
The state file format is a private API that is meant only for internal use within
Terraform. You should never edit the Terraform state files by hand or write code that
reads them directly.

If for some reason you need to manipulate the state file—which should be a relatively
rare occurrence—use the terraform import or terraform state commands
(you’ll see examples of both in Chapter 5).

If you’re using Terraform for a personal project, storing state in a single
terraform.tfstate file that lives locally on your computer works just fine. But
if you want to use Terraform as a team on a real product, you run into
several problems:

Shared storage for state files

To be able to use Terraform to update your infrastructure, each of your
team members needs access to the same Terraform state files. That
means you need to store those files in a shared location.

Locking state files



As soon as data is shared, you run into a new problem: locking. Without
locking, if two team members are running Terraform at the same time,
you can run into race conditions as multiple Terraform processes make
concurrent updates to the state files, leading to conflicts, data loss, and
state file corruption.

Isolating state files

When making changes to your infrastructure, it’s a best practice to
isolate different environments. For example, when making a change in a
testing or staging environment, you want to be sure that there is no way
you can accidentally break production. But how can you isolate your
changes if all of your infrastructure is defined in the same Terraform
state file?

In the following sections, I’ll dive into each of these problems and show
you how to solve them.

Shared Storage for State Files
The most common technique for allowing multiple team members to access
a common set of files is to put them in version control (e.g., Git). Although
you should definitely store your Terraform code in version control, storing
Terraform state in version control is a bad idea for the following reasons:

Manual error

It’s too easy to forget to pull down the latest changes from version
control before running Terraform or to push your latest changes to
version control after running Terraform. It’s just a matter of time before
someone on your team runs Terraform with out-of-date state files and,
as a result, accidentally rolls back or duplicates previous deployments.

Locking



Most version control systems do not provide any form of locking that
would prevent two team members from running terraform apply
on the same state file at the same time.

Secrets

All data in Terraform state files is stored in plain text. This is a problem
because certain Terraform resources need to store sensitive data. For
example, if you use the aws_db_instance resource to create a
database, Terraform will store the username and password for the
database in a state file in plain text, and you shouldn’t store plain text
secrets in version control.

Instead of using version control, the best way to manage shared storage for
state files is to use Terraform’s built-in support for remote backends. A
Terraform backend determines how Terraform loads and stores state. The
default backend, which you’ve been using this entire time, is the local
backend, which stores the state file on your local disk. Remote backends
allow you to store the state file in a remote, shared store. A number of
remote backends are supported, including Amazon S3, Azure Storage,
Google Cloud Storage, and HashiCorp’s Terraform Cloud and Terraform
Enterprise.

Remote backends solve the three issues just listed:

Manual error

After you configure a remote backend, Terraform will automatically
load the state file from that backend every time you run plan or
apply, and it’ll automatically store the state file in that backend after
each apply, so there’s no chance of manual error.

Locking

Most of the remote backends natively support locking. To run
terraform apply, Terraform will automatically acquire a lock; if
someone else is already running apply, they will already have the



lock, and you will have to wait. You can run apply with the -lock-
timeout=<TIME> parameter to instruct Terraform to wait up to
TIME for a lock to be released (e.g., -lock-timeout=10m will wait
for 10 minutes).

Secrets

Most of the remote backends natively support encryption in transit and
encryption at rest of the state file. Moreover, those backends usually
expose ways to configure access permissions (e.g., using IAM policies
with an Amazon S3 bucket), so you can control who has access to your
state files and the secrets they might contain. It would be better still if
Terraform natively supported encrypting secrets within the state file, but
these remote backends reduce most of the security concerns, given that
at least the state file isn’t stored in plain text on disk anywhere.

If you’re using Terraform with AWS, Amazon S3 (Simple Storage Service),
which is Amazon’s managed file store, is typically your best bet as a remote
backend for the following reasons:

It’s a managed service, so you don’t need to deploy and manage extra
infrastructure to use it.

It’s designed for 99.999999999% durability and 99.99% availability,
which means you don’t need to worry too much about data loss or
outages.

It supports encryption, which reduces worries about storing sensitive
data in state files. You still have to be very careful who on your team
can access the S3 bucket, but at least the data will be encrypted at rest
(Amazon S3 supports server-side encryption using AES-256) and in
transit (Terraform uses TLS when talking to Amazon S3).

It supports locking via DynamoDB. (More on this later.)

It supports versioning, so every revision of your state file is stored, and
you can roll back to an older version if something goes wrong.
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It’s inexpensive, with most Terraform usage easily fitting into the
AWS Free Tier.

To enable remote state storage with Amazon S3, the first step is to create an
S3 bucket. Create a main.tf file in a new folder (it should be a different
folder from where you store the configurations from Chapter 2), and at the
top of the file, specify AWS as the provider:

provider "aws" {
  region = "us-east-2"
}

Next, create an S3 bucket by using the aws_s3_bucket resource:

resource "aws_s3_bucket" "terraform_state" {
  bucket = "terraform-up-and-running-state" 
 
  # Prevent accidental deletion of this S3 bucket 
  lifecycle {
    prevent_destroy = true 
  }
}

This code sets the following arguments:

bucket

This is the name of the S3 bucket. Note that S3 bucket names must be
globally unique among all AWS customers. Therefore, you will need to
change the bucket parameter from "terraform-up-and-
running-state" (which I already created) to your own name. Make
sure to remember this name and take note of what AWS region you’re
using because you’ll need both pieces of information again a little later
on.

prevent_destroy

prevent_destroy is the second lifecycle setting you’ve seen (the
first was create_before_destroy in Chapter 2). When you set
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prevent_destroy to true on a resource, any attempt to delete that
resource (e.g., by running terraform destroy) will cause
Terraform to exit with an error. This is a good way to prevent accidental
deletion of an important resource, such as this S3 bucket, which will
store all of your Terraform state. Of course, if you really mean to delete
it, you can just comment that setting out.

Let’s now add several extra layers of protection to this S3 bucket.

First, use the aws_s3_bucket_versioning resource to enable
versioning on the S3 bucket so that every update to a file in the bucket
actually creates a new version of that file. This allows you to see older
versions of the file and revert to those older versions at any time, which can
be a useful fallback mechanism if something goes wrong:

# Enable versioning so you can see the full revision history of 
your
# state files
resource "aws_s3_bucket_versioning" "enabled" {
  bucket = aws_s3_bucket.terraform_state.id 
  versioning_configuration {
    status = "Enabled" 
  }
}

Second, use the
aws_s3_bucket_server_side_encryption_configuration
resource to turn server-side encryption on by default for all data written to
this S3 bucket. This ensures that your state files, and any secrets they might
contain, are always encrypted on disk when stored in S3:

# Enable server-side encryption by default
resource "aws_s3_bucket_server_side_encryption_configuration" 
"default" {
  bucket = aws_s3_bucket.terraform_state.id 
 
  rule { 
    apply_server_side_encryption_by_default {
      sse_algorithm = "AES256" 



    } 
  }
}

Third, use the aws_s3_bucket_public_access_block resource to
block all public access to the S3 bucket. S3 buckets are private by default,
but as they are often used to serve static content—e.g., images, fonts, CSS,
JS, HTML—it is possible, even easy, to make the buckets public. Since
your Terraform state files may contain sensitive data and secrets, it’s worth
adding this extra layer of protection to ensure no one on your team can ever
accidentally make this S3 bucket public:

# Explicitly block all public access to the S3 bucket
resource "aws_s3_bucket_public_access_block" "public_access" {
  bucket                  = aws_s3_bucket.terraform_state.id
  block_public_acls       = true
  block_public_policy     = true
  ignore_public_acls      = true
  restrict_public_buckets = true
}

Next, you need to create a DynamoDB table to use for locking. DynamoDB
is Amazon’s distributed key-value store. It supports strongly consistent
reads and conditional writes, which are all the ingredients you need for a
distributed lock system. Moreover, it’s completely managed, so you don’t
have any infrastructure to run yourself, and it’s inexpensive, with most
Terraform usage easily fitting into the AWS Free Tier.

To use DynamoDB for locking with Terraform, you must create a
DynamoDB table that has a primary key called LockID (with this exact
spelling and capitalization). You can create such a table using the
aws_dynamodb_table resource:

resource "aws_dynamodb_table" "terraform_locks" {
  name         = "terraform-up-and-running-locks"
  billing_mode = "PAY_PER_REQUEST"
  hash_key     = "LockID" 
 
  attribute {
    name = "LockID"
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    type = "S" 
  }
}

Run terraform init to download the provider code, and then run
terraform apply to deploy. After everything is deployed, you will
have an S3 bucket and DynamoDB table, but your Terraform state will still
be stored locally. To configure Terraform to store the state in your S3
bucket (with encryption and locking), you need to add a backend
configuration to your Terraform code. This is configuration for Terraform
itself, so it resides within a terraform block and has the following
syntax:

terraform { 
  backend "<BACKEND_NAME>" { 
    [CONFIG...] 
  }
}

where BACKEND_NAME is the name of the backend you want to use (e.g.,
"s3") and CONFIG consists of one or more arguments that are specific to
that backend (e.g., the name of the S3 bucket to use). Here’s what the
backend configuration looks like for an S3 bucket:

terraform { 
  backend "s3" {
    # Replace this with your bucket name!
    bucket         = "terraform-up-and-running-state"
    key            = "global/s3/terraform.tfstate"
    region         = "us-east-2" 
 
    # Replace this with your DynamoDB table name!
    dynamodb_table = "terraform-up-and-running-locks"
    encrypt        = true 
  }
}

Let’s go through these settings one at a time:

bucket



The name of the S3 bucket to use. Make sure to replace this with the
name of the S3 bucket you created earlier.

key

The filepath within the S3 bucket where the Terraform state file should
be written. You’ll see a little later on why the preceding example code
sets this to global/s3/terraform.tfstate.

region

The AWS region where the S3 bucket lives. Make sure to replace this
with the region of the S3 bucket you created earlier.

dynamodb_table

The DynamoDB table to use for locking. Make sure to replace this with
the name of the DynamoDB table you created earlier.

encrypt

Setting this to true ensures that your Terraform state will be encrypted
on disk when stored in S3. We already enabled default encryption in the
S3 bucket itself, so this is here as a second layer to ensure that the data
is always encrypted.

To instruct Terraform to store your state file in this S3 bucket, you’re going
to use the terraform init command again. This command not only
can download provider code, but also configure your Terraform backend
(and you’ll see yet another use later on, too). Moreover, the init
command is idempotent, so it’s safe to run it multiple times:

$ terraform init 
 
Initializing the backend... 
Acquiring state lock. This may take a few moments... 
Do you want to copy existing state to the new backend? 
  Pre-existing state was found while migrating the previous 
"local" backend 



  to the newly configured "s3" backend. No existing state was 
found in the 
  newly configured "s3" backend. Do you want to copy this state 
to the new 
  "s3" backend? Enter "yes" to copy and "no" to start with an 
empty state. 
 
  Enter a value:

Terraform will automatically detect that you already have a state file locally
and prompt you to copy it to the new S3 backend. If you type yes, you
should see the following:

Successfully configured the backend "s3"! Terraform will 
automatically 
use this backend unless the backend configuration changes.

After running this command, your Terraform state will be stored in the S3
bucket. You can check this by heading over to the S3 Management Console
in your browser and clicking your bucket. You should see something similar
to Figure 3-1.

Figure 3-1. You can use the AWS Console to see how your state file is stored in an S3 bucket.

https://amzn.to/2Kw5qAc


With this backend enabled, Terraform will automatically pull the latest state
from this S3 bucket before running a command and automatically push the
latest state to the S3 bucket after running a command. To see this in action,
add the following output variables:

output "s3_bucket_arn" {
  value       = aws_s3_bucket.terraform_state.arn
  description = "The ARN of the S3 bucket"
} 
 
output "dynamodb_table_name" {
  value       = aws_dynamodb_table.terraform_locks.name
  description = "The name of the DynamoDB table"
}

These variables will print out the Amazon Resource Name (ARN) of your
S3 bucket and the name of your DynamoDB table. Run terraform
apply to see it:

$ terraform apply 
 
(...) 
 
Acquiring state lock. This may take a few moments... 
 
aws_dynamodb_table.terraform_locks: Refreshing state... 
aws_s3_bucket.terraform_state: Refreshing state... 
 
Apply complete! Resources: 0 added, 0 changed, 0 destroyed. 
 
Releasing state lock. This may take a few moments... 
 
Outputs: 
 
dynamodb_table_name = "terraform-up-and-running-locks" 
s3_bucket_arn = "arn:aws:s3:::terraform-up-and-running-state"

Note how Terraform is now acquiring a lock before running apply and
releasing the lock after!

Now, head over to the S3 console again, refresh the page, and click the gray
Show button next to Versions. You should now see several versions of your



terraform.tfstate file in the S3 bucket, as shown in Figure 3-2.

Figure 3-2. If you enable versioning for your S3 bucket, every change to the state file will be stored
as a separate version.

This means that Terraform is automatically pushing and pulling state data to
and from S3, and S3 is storing every revision of the state file, which can be
useful for debugging and rolling back to older versions if something goes
wrong.

Limitations with Terraform’s Backends
Terraform’s backends have a few limitations and gotchas that you need to
be aware of. The first limitation is the chicken-and-egg situation of using
Terraform to create the S3 bucket where you want to store your Terraform
state. To make this work, you had to use a two-step process:

1. Write Terraform code to create the S3 bucket and DynamoDB table,
and deploy that code with a local backend.



2. Go back to the Terraform code, add a remote backend configuration
to it to use the newly created S3 bucket and DynamoDB table, and run
terraform init to copy your local state to S3.

If you ever wanted to delete the S3 bucket and DynamoDB table, you’d
have to do this two-step process in reverse:

1. Go to the Terraform code, remove the backend configuration, and
rerun terraform init to copy the Terraform state back to your
local disk.

2. Run terraform destroy to delete the S3 bucket and DynamoDB
table.

This two-step process is a bit awkward, but the good news is that you can
share a single S3 bucket and DynamoDB table across all of your Terraform
code, so you’ll probably only need to do it once (or once per AWS account
if you have multiple accounts). After the S3 bucket exists, in the rest of
your Terraform code, you can specify the backend configuration right
from the start without any extra steps.

The second limitation is more painful: the backend block in Terraform
does not allow you to use any variables or references. The following code
will not work:

# This will NOT work. Variables aren't allowed in a backend 
configuration.
terraform { 
  backend "s3" {
    bucket         = var.bucket
    region         = var.region
    dynamodb_table = var.dynamodb_table
    key            = "example/terraform.tfstate"
    encrypt        = true 
  }
}

This means that you need to manually copy and paste the S3 bucket name,
region, DynamoDB table name, etc., into every one of your Terraform



modules (you’ll learn all about Terraform modules in Chapters 4 and 8; for
now, it’s enough to understand that modules are a way to organize and reuse
Terraform code and that real-world Terraform code typically consists of
many small modules). Even worse, you must very carefully not copy and
paste the key value but ensure a unique key for every Terraform module
you deploy so that you don’t accidentally overwrite the state of some other
module! Having to do lots of copy-and-pastes and lots of manual changes is
error prone, especially if you need to deploy and manage many Terraform
modules across many environments.

One option for reducing copy-and-paste is to use partial configurations,
where you omit certain parameters from the backend configuration in
your Terraform code and instead pass those in via -backend-config
command-line arguments when calling terraform init. For example,
you could extract the repeated backend arguments, such as bucket and
region, into a separate file called backend.hcl:

# backend.hcl
bucket         = "terraform-up-and-running-state"
region         = "us-east-2"
dynamodb_table = "terraform-up-and-running-locks"
encrypt        = true

Only the key parameter remains in the Terraform code, since you still need
to set a different key value for each module:

# Partial configuration. The other settings (e.g., bucket, 
region) will be
# passed in from a file via -backend-config arguments to 
'terraform init'
terraform { 
  backend "s3" {
    key = "example/terraform.tfstate" 
  }
}

To put all your partial configurations together, run terraform init
with the -backend-config argument:



$ terraform init -backend-config=backend.hcl

Terraform merges the partial configuration in backend.hcl with the partial
configuration in your Terraform code to produce the full configuration used
by your module. You can use the same backend.hcl file with all of your
modules, which reduces duplication considerably; however, you’ll still need
to manually set a unique key value in every module.

Another option for reducing copy-and-paste is to use Terragrunt, an open
source tool that tries to fill in a few gaps in Terraform. Terragrunt can help
you keep your entire backend configuration DRY (Don’t Repeat
Yourself) by defining all the basic backend settings (bucket name, region,
DynamoDB table name) in one file and automatically setting the key
argument to the relative folder path of the module.

You’ll see an example of how to use Terragrunt in Chapter 10.

State File Isolation
With a remote backend and locking, collaboration is no longer a problem.
However, there is still one more problem remaining: isolation. When you
first start using Terraform, you might be tempted to define all of your
infrastructure in a single Terraform file or a single set of Terraform files in
one folder. The problem with this approach is that all of your Terraform
state is now stored in a single file, too, and a mistake anywhere could break
everything.

For example, while trying to deploy a new version of your app in staging,
you might break the app in production. Or, worse yet, you might corrupt
your entire state file, either because you didn’t use locking or due to a rare
Terraform bug, and now all of your infrastructure in all environments is
broken.

The whole point of having separate environments is that they are isolated
from one another, so if you are managing all the environments from a single
set of Terraform configurations, you are breaking that isolation. Just as a
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ship has bulkheads that act as barriers to prevent a leak in one part of the
ship from immediately flooding all the others, you should have “bulkheads”
built into your Terraform design, as shown in Figure 3-3.

Figure 3-3. Create isolation (“bulkheads”) between your environments by defining each environment
in a separate Terraform configuration.

As Figure 3-3 illustrates, instead of defining all your environments in a
single set of Terraform configurations (top), you want to define each



environment in a separate set of configurations (bottom), so a problem in
one environment is completely isolated from the others. There are two ways
you could isolate state files:

Isolation via workspaces

Useful for quick, isolated tests on the same configuration

Isolation via file layout

Useful for production use cases for which you need strong separation
between environments

Let’s dive into each of these in the next two sections.

Isolation via Workspaces
Terraform workspaces allow you to store your Terraform state in multiple,
separate, named workspaces. Terraform starts with a single workspace
called “default,” and if you never explicitly specify a workspace, the default
workspace is the one you’ll use the entire time. To create a new workspace
or switch between workspaces, you use the terraform workspace
commands. Let’s experiment with workspaces on some Terraform code that
deploys a single EC2 Instance:

resource "aws_instance" "example" {
  ami           = "ami-0fb653ca2d3203ac1"
  instance_type = "t2.micro"
}

Configure a backend for this Instance using the S3 bucket and DynamoDB
table you created earlier in the chapter but with the key set to
workspaces-example/ terraform.tfstate:

terraform { 
  backend "s3" {
    # Replace this with your bucket name!
    bucket         = "terraform-up-and-running-state"
    key            = "workspaces-example/terraform.tfstate"



    region         = "us-east-2" 
 
    # Replace this with your DynamoDB table name!
    dynamodb_table = "terraform-up-and-running-locks"
    encrypt        = true 
  }
}

Run terraform init and terraform apply to deploy this code:

$ terraform init 
 
 
Initializing the backend... 
 
Successfully configured the backend "s3"! Terraform will 
automatically 
use this backend unless the backend configuration changes. 
 
Initializing provider plugins... 
 
(...) 
 
Terraform has been successfully initialized! 
 
 
 
$ terraform apply 
 
(...) 
 
Apply complete! Resources: 1 added, 0 changed, 0 destroyed.

The state for this deployment is stored in the default workspace. You can
confirm this by running the terraform workspace show command,
which will identify which workspace you’re currently in:

$ terraform workspace show 
default

The default workspace stores your state in exactly the location you specify
via the key configuration. As shown in Figure 3-4, if you take a look in



your S3 bucket, you’ll find a terraform.tfstate file in the workspaces-
example folder.

Figure 3-4. When using the default workspace, the S3 bucket will have just a single folder and state
file in it.

Let’s create a new workspace called “example1” using the terraform
workspace new command:

$ terraform workspace new example1 
Created and switched to workspace "example1"! 
 



You're now on a new, empty workspace. Workspaces isolate their 
state, 
so if you run "terraform plan" Terraform will not see any 
existing state 
for this configuration.

Now, note what happens if you try to run terraform plan:

$ terraform plan 
 
Terraform will perform the following actions: 
 
  # aws_instance.example will be created 
  + resource "aws_instance" "example" { 
      + ami                          = "ami-0fb653ca2d3203ac1" 
      + instance_type                = "t2.micro" 
      (...) 
    } 
 
Plan: 1 to add, 0 to change, 0 to destroy.

Terraform wants to create a totally new EC2 Instance from scratch! That’s
because the state files in each workspace are isolated from one another, and
because you’re now in the example1 workspace, Terraform isn’t using the
state file from the default workspace and therefore doesn’t see the EC2
Instance was already created there.

Try running terraform apply to deploy this second EC2 Instance in
the new workspace:

$ terraform apply 
 
(...) 
 
Apply complete! Resources: 1 added, 0 changed, 0 destroyed.

Repeat the exercise one more time and create another workspace called
“example2”:

$ terraform workspace new example2 
Created and switched to workspace "example2"! 
 



You're now on a new, empty workspace. Workspaces isolate their 
state, 
so if you run "terraform plan" Terraform will not see any 
existing state 
for this configuration.

Run terraform apply again to deploy a third EC2 Instance:

$ terraform apply 
 
(...) 
 
Apply complete! Resources: 1 added, 0 changed, 0 destroyed.

You now have three workspaces available, which you can see by using the
terraform workspace list command:

$ terraform workspace list 
  default 
  example1 
* example2

And you can switch between them at any time using the terraform
workspace select command:

$ terraform workspace select example1 
Switched to workspace "example1".

To understand how this works under the hood, take a look again in your S3
bucket; you should now see a new folder called env:, as shown in Figure 3-
5.



Figure 3-5. When using custom workspaces, the S3 bucket will have multiple folders and state files in
it.

Inside the env: folder, you’ll find one folder for each of your workspaces, as
shown in Figure 3-6.



Figure 3-6. Terraform creates one folder per workspace.

Inside each of those workspaces, Terraform uses the key you specified in
your backend configuration, so you should find an example1/workspaces-
example/terraform.tfstate and an example2/workspaces-
example/terraform.tfstate. In other words, switching to a different
workspace is equivalent to changing the path where your state file is stored.



This is handy when you already have a Terraform module deployed and you
want to do some experiments with it (e.g., try to refactor the code) but you
don’t want your experiments to affect the state of the already-deployed
infrastructure. Terraform workspaces allow you to run terraform
workspace new and deploy a new copy of the exact same infrastructure,
but storing the state in a separate file.

In fact, you can even change how that module behaves based on the
workspace you’re in by reading the workspace name using the expression
terraform.workspace. For example, here’s how to set the Instance
type to t2.medium in the default workspace and t2.micro in all other
workspaces (e.g., to save money when experimenting):

resource "aws_instance" "example" {
  ami           = "ami-0fb653ca2d3203ac1"
  instance_type = terraform.workspace == "default" ? "t2.medium" 
: "t2.micro"
}

The preceding code uses ternary syntax to conditionally set
instance_type to either t2.medium or t2.micro, depending on the
value of terraform.workspace. You’ll see the full details of ternary
syntax and conditional logic in Terraform in Chapter 5.

Terraform workspaces can be a great way to quickly spin up and tear down
different versions of your code, but they have a few drawbacks:

The state files for all of your workspaces are stored in the same
backend (e.g., the same S3 bucket). That means you use the same
authentication and access controls for all the workspaces, which is one
major reason workspaces are an unsuitable mechanism for isolating
environments (e.g., isolating staging from production).

Workspaces are not visible in the code or on the terminal unless you
run terraform workspace commands. When browsing the code,
a module that has been deployed in one workspace looks exactly the
same as a module deployed in 10 workspaces. This makes



maintenance more difficult, because you don’t have a good picture of
your infrastructure.

Putting the two previous items together, the result is that workspaces
can be fairly error prone. The lack of visibility makes it easy to forget
what workspace you’re in and accidentally deploy changes in the
wrong one (e.g., accidentally running terraform destroy in a
“production” workspace rather than a “staging” workspace), and
because you must use the same authentication mechanism for all
workspaces, you have no other layers of defense to protect against
such errors.

Due to these drawbacks, workspaces are not a suitable mechanism for
isolating one environment from another: e.g., isolating staging from
production.  To get proper isolation between environments, instead of
workspaces, you’ll most likely want to use file layout, which is the topic of
the next section.

Before moving on, make sure to clean up the three EC2 Instances you just
deployed by running terraform workspace select <name> and
terraform destroy in each of the three workspaces.

Isolation via File Layout
To achieve full isolation between environments, you need to do the
following:

Put the Terraform configuration files for each environment into a
separate folder. For example, all of the configurations for the staging
environment can be in a folder called stage and all the configurations
for the production environment can be in a folder called prod.

Configure a different backend for each environment, using different
authentication mechanisms and access controls: e.g., each environment
could live in a separate AWS account with a separate S3 bucket as a
backend.
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With this approach, the use of separate folders makes it much clearer which
environments you’re deploying to, and the use of separate state files, with
separate authentication mechanisms, makes it significantly less likely that a
screw-up in one environment can have any impact on another.

In fact, you might want to take the isolation concept beyond environments
and down to the “component” level, where a component is a coherent set of
resources that you typically deploy together. For example, after you’ve set
up the basic network topology for your infrastructure—in AWS lingo, your
Virtual Private Cloud (VPC) and all the associated subnets, routing rules,
VPNs, and network ACLs—you will probably change it only once every
few months, at most. On the other hand, you might deploy a new version of
a web server multiple times per day. If you manage the infrastructure for
both the VPC component and the web server component in the same set of
Terraform configurations, you are unnecessarily putting your entire network
topology at risk of breakage (e.g., from a simple typo in the code or
someone accidentally running the wrong command) multiple times per day.

Therefore, I recommend using separate Terraform folders (and therefore
separate state files) for each environment (staging, production, etc.) and for
each component (VPC, services, databases) within that environment. To see
what this looks like in practice, let’s go through the recommended file
layout for Terraform projects.

Figure 3-7 shows the file layout for my typical Terraform project.





Figure 3-7. The typical file layout for a Terraform project uses separate folders for each environment
and for each component within that environment.

At the top level, there are separate folders for each “environment.” The
exact environments differ for every project, but the typical ones are as
follows:

stage

An environment for pre-production workloads (i.e., testing)

prod

An environment for production workloads (i.e., user-facing apps)

mgmt

An environment for DevOps tooling (e.g., bastion host, CI server)

global

A place to put resources that are used across all environments (e.g., S3,
IAM)

Within each environment, there are separate folders for each “component.”
The components differ for every project, but here are the typical ones:

vpc

The network topology for this environment.

services

The apps or microservices to run in this environment, such as a Ruby on
Rails frontend or a Scala backend. Each app could even live in its own
folder to isolate it from all the other apps.

data-storage

The data stores to run in this environment, such as MySQL or Redis.
Each data store could even reside in its own folder to isolate it from all



other data stores.

Within each component, there are the actual Terraform configuration files,
which are organized according to the following naming conventions:

variables.tf

Input variables

outputs.tf

Output variables

main.tf

Resources and data sources

When you run Terraform, it simply looks for files in the current directory
with the .tf extension, so you can use whatever filenames you want.
However, although Terraform may not care about filenames, your
teammates probably do. Using a consistent, predictable naming convention
makes your code easier to browse: e.g., you’ll always know where to look
to find a variable, output, or resource.

Note that the preceding convention is the minimum convention you should
follow, because in virtually all uses of Terraform, it’s useful to be able to
jump to the input variables, output variables, and resources very quickly,
but you may want to go beyond this convention. Here are just a few
examples:

dependencies.tf

It’s common to put all your data sources in a dependencies.tf file to
make it easier to see what external things the code depends on.

providers.tf

You may want to put your provider blocks into a providers.tf file so
you can see, at a glance, what providers the code talks to and what



authentication you’ll have to provide.

main-xxx.tf

If the main.tf file is getting really long because it contains a large
number of resources, you could break it down into smaller files that
group the resources in some logical way: e.g., main-iam.tf could contain
all the IAM resources, main-s3.tf could contain all the S3 resources, and
so on. Using the main- prefix makes it easier to scan the list of files in a
folder when they are organized alphabetically, as all the resources will
be grouped together. It’s also worth noting that if you find yourself
managing a very large number of resources and struggling to break
them down across many files, that might be a sign that you should break
your code into smaller modules instead, which is a topic I’ll dive into in
Chapter 4.

Let’s take the web server cluster code you wrote in Chapter 2, plus the
Amazon S3 and DynamoDB code you wrote in this chapter, and rearrange it
using the folder structure in Figure 3-8.



Figure 3-8. Move the web server cluster code into a stage/services/webserver-cluster folder to
indicate that this is a testing or staging version of the web server.

The S3 bucket you created in this chapter should be moved into the
global/s3 folder. Move the output variables (s3_bucket_arn and
dynamodb_table_name) into outputs.tf. When moving the folder, make
sure that you don’t miss the (hidden) .terraform folder when copying files
to the new location so you don’t need to reinitialize everything.

The web server cluster you created in Chapter 2 should be moved into
stage/services/webserver-cluster (think of this as the “testing” or “staging”
version of that web server cluster; you’ll add a “production” version in the



next chapter). Again, make sure to copy over the .terraform folder, move
input variables into variables.tf, and move output variables into outputs.tf.

You should also update the web server cluster to use S3 as a backend.
You can copy and paste the backend config from global/s3/main.tf more
or less verbatim, but make sure to change the key to the same folder path
as the web server Terraform code: stage/services/webserver-
cluster/terraform.tfstate. This gives you a 1:1 mapping between the layout
of your Terraform code in version control and your Terraform state files in
S3, so it’s obvious how the two are connected. The s3 module already sets
the key using this convention.

This file layout has a number of advantages:

Clear code / environment layout

It’s easy to browse the code and understand exactly what components
are deployed in each environment.

Isolation

This layout provides a good amount of isolation between environments
and between components within an environment, ensuring that if
something goes wrong, the damage is contained as much as possible to
just one small part of your entire infrastructure.

In some ways, these advantages are drawbacks, too:

Working with multiple folders

Splitting components into separate folders prevents you from
accidentally blowing up your entire infrastructure in one command, but
it also prevents you from creating your entire infrastructure in one
command. If all of the components for a single environment were
defined in a single Terraform configuration, you could spin up an entire
environment with a single call to terraform apply. But if all of the
components are in separate folders, then you need to run terraform
apply separately in each one.



Solution: If you use Terragrunt, you can run commands across multiple
folders concurrently using the run-all command.

Copy/paste

The file layout described in this section has a lot of duplication. For
example, the same frontend-app and backend-app live in both
the stage and prod folders.

Solution: You won’t actually need to copy and paste all of that code! In
Chapter 4, you’ll see how to use Terraform modules to keep all of this
code DRY.

Resource dependencies

Breaking the code into multiple folders makes it more difficult to use
resource dependencies. If your app code was defined in the same
Terraform configuration files as the database code, that app code could
directly access attributes of the database using an attribute reference
(e.g., access the database address via
aws_db_instance.foo.address). But if the app code and
database code live in different folders, as I’ve recommended, you can
no longer do that.

Solution: One option is to use dependency blocks in Terragrunt, as
you’ll see in Chapter 10. Another option is to use the
terraform_remote_state data source, as described in the next
section.

The terraform_remote_state Data Source
In Chapter 2, you used data sources to fetch read-only information from
AWS, such as the aws_subnets data source, which returns a list of
subnets in your VPC. There is another data source that is particularly useful
when working with state: terraform_remote_state. You can use

https://oreil.ly/tmmii


this data source to fetch the Terraform state file stored by another set of
Terraform configurations.

Let’s go through an example. Imagine that your web server cluster needs to
communicate with a MySQL database. Running a database that is scalable,
secure, durable, and highly available is a lot of work. Again, you can let
AWS take care of it for you, this time by using Amazon’s Relational
Database Service (RDS), as shown in Figure 3-9. RDS supports a variety of
databases, including MySQL, PostgreSQL, SQL Server, and Oracle.

You might not want to define the MySQL database in the same set of
configuration files as the web server cluster, because you’ll be deploying
updates to the web server cluster far more frequently and don’t want to risk
accidentally breaking the database each time you do so.



Figure 3-9. The web server cluster communicates with MySQL, which is deployed on top of Amazon
RDS.

Therefore, your first step should be to create a new folder at stage/data-
stores/mysql and create the basic Terraform files (main.tf, variables.tf,



outputs.tf) within it, as shown in Figure 3-10.





Figure 3-10. Create the database code in the stage/data-stores folder.

Next, create the database resources in stage/data-stores/mysql/main.tf:

provider "aws" {
  region = "us-east-2"
} 
 
resource "aws_db_instance" "example" {
  identifier_prefix   = "terraform-up-and-running"
  engine              = "mysql"
  allocated_storage   = 10
  instance_class      = "db.t2.micro"
  skip_final_snapshot = true
  db_name             = "example_database" 
 
  # How should we set the username and password?
  username = "???"
  password = "???"
}

At the top of the file, you see the typical provider block, but just below
that is a new resource: aws_db_instance. This resource creates a
database in RDS with the following settings:

MySQL as the database engine.

10 GB of storage.

A db.t2.micro Instance, which has one virtual CPU, 1 GB of
memory, and is part of the AWS Free Tier.

The final snapshot is disabled, as this code is just for learning and
testing (if you don’t disable the snapshot, or don’t provide a name for
the snapshot via the final_snapshot_identifier parameter,
destroy will fail).

Note that two of the parameters that you must pass to the
aws_db_instance resource are the master username and master
password. Because these are secrets, you should not put them directly into
your code in plain text! In Chapter 6, I’ll discuss a variety of options for



how to securely handle secrets with Terraform. For now, let’s use an option
that avoids storing any secrets in plain text and is easy to use: you store
your secrets, such as database passwords, outside of Terraform (e.g., in a
password manager such as 1Password, LastPass, or macOS Keychain), and
you pass those secrets into Terraform via environment variables.

To do that, declare variables called db_username and db_password in
stage/data-stores/mysql/variables.tf:

variable "db_username" {
  description = "The username for the database"
  type        = string
  sensitive   = true
} 
 
variable "db_password" {
  description = "The password for the database"
  type        = string
  sensitive   = true
}

First, note that these variables are marked with sensitive = true to
indicate they contain secrets. This ensures Terraform won’t log the values
when you run plan or apply. Second, note that these variables do not
have a default. This is intentional. You should not store your database
credentials or any sensitive information in plain text. Instead, you’ll set
these variables using environment variables.

Before doing that, let’s finish the code. First, pass the two new input
variables through to the aws_db_instance resource:

resource "aws_db_instance" "example" {
  identifier_prefix   = "terraform-up-and-running"
  engine              = "mysql"
  allocated_storage   = 10
  instance_class      = "db.t2.micro"
  skip_final_snapshot = true
  db_name             = "example_database" 
 
  username = var.db_username



  password = var.db_password
}

Next, configure this module to store its state in the S3 bucket you created
earlier at the path stage/data-stores/mysql/terraform.tfstate:

terraform { 
  backend "s3" {
    # Replace this with your bucket name!
    bucket         = "terraform-up-and-running-state"
    key            = "stage/data-stores/mysql/terraform.tfstate"
    region         = "us-east-2" 
 
    # Replace this with your DynamoDB table name!
    dynamodb_table = "terraform-up-and-running-locks"
    encrypt        = true 
  }
}

Finally, add two output variables in stage/data-stores/mysql/outputs.tf to
return the database’s address and port:

output "address" {
  value       = aws_db_instance.example.address
  description = "Connect to the database at this endpoint"
} 
 
output "port" {
  value       = aws_db_instance.example.port
  description = "The port the database is listening on"
}

You’re now ready to pass in the database username and password using
environment variables. As a reminder, for each input variable foo defined
in your Terraform configurations, you can provide Terraform the value of
this variable using the environment variable TF_VAR_foo. For the
db_username and db_password input variables, here is how you can
set the TF_VAR_db_username and TF_VAR_db_password
environment variables on Linux/Unix/macOS systems:



$ export TF_VAR_db_username="(YOUR_DB_USERNAME)" 
$ export TF_VAR_db_password="(YOUR_DB_PASSWORD)"

And here is how you do it on Windows systems:

$ set TF_VAR_db_username="(YOUR_DB_USERNAME)" 
$ set TF_VAR_db_password="(YOUR_DB_PASSWORD)"

Run terraform init and terraform apply to create the database.
Note that Amazon RDS can take roughly 10 minutes to provision even a
small database, so be patient. After apply completes, you should see the
outputs in the terminal:

$ terraform apply 
 
(...) 
 
Apply complete! Resources: 1 added, 0 changed, 0 destroyed. 
 
Outputs: 
 
address = "terraform-up-and-running.cowu6mts6srx.us-east-
2.rds.amazonaws.com" 
port = 3306

These outputs are now also stored in the Terraform state for the database,
which is in your S3 bucket at the path stage/data-
stores/mysql/terraform.tfstate.

If you go back to your web server cluster code, you can get the web server
to read those outputs from the database’s state file by adding the
terraform_remote_state data source in stage/services/webserver-
cluster/main.tf:

data "terraform_remote_state" "db" {
  backend = "s3" 
 
  config = {
    bucket = "(YOUR_BUCKET_NAME)"
    key    = "stage/data-stores/mysql/terraform.tfstate"
    region = "us-east-2" 



  }
}

This terraform_remote_state data source configures the web
server cluster code to read the state file from the same S3 bucket and folder
where the database stores its state, as shown in Figure 3-11.





Figure 3-11. The database writes its state to an S3 bucket (top), and the web server cluster reads that
state from the same bucket (bottom).

It’s important to understand that, like all Terraform data sources, the data
returned by terraform_remote_state is read-only. Nothing you do
in your web server cluster Terraform code can modify that state, so you can
pull in the database’s state data with no risk of causing any problems in the
database itself.

All of the database’s output variables are stored in the state file, and you can
read them from the terraform_remote_state data source using an
attribute reference of the form:

data.terraform_remote_state.<NAME>.outputs.<ATTRIBUTE>

For example, here is how you can update the User Data of the web server
cluster Instances to pull the database address and port out of the
terraform_remote_state data source and expose that information in
the HTTP response:

user_data = <<EOF
#!/bin/bash
echo "Hello, World" >> index.xhtml
echo "${data.terraform_remote_state.db.outputs.address}" >> 
index.xhtml
echo "${data.terraform_remote_state.db.outputs.port}" >> 
index.xhtml
nohup busybox httpd -f -p ${var.server_port} &
EOF

As the User Data script is growing longer, defining it inline is becoming
messier and messier. In general, embedding one programming language
(Bash) inside another (Terraform) makes it more difficult to maintain each
one, so let’s pause here for a moment to externalize the Bash script. To do
that, you can use the templatefile built-in function.

Terraform includes a number of built-in functions that you can execute
using an expression of the form:



function_name(...)

For example, consider the format function:

format(<FMT>, <ARGS>, ...)

This function formats the arguments in ARGS according to the sprintf
syntax in the string FMT.  A great way to experiment with built-in functions
is to run the terraform console command to get an interactive
console where you can try out Terraform syntax, query the state of your
infrastructure, and see the results instantly:

$ terraform console 
 
> format("%.3f", 3.14159265359) 
3.142

Note that the Terraform console is read-only, so you don’t need to worry
about accidentally changing infrastructure or state.

There are a number of other built-in functions that you can use to
manipulate strings, numbers, lists, and maps.  One of them is the
templatefile function:

templatefile(<PATH>, <VARS>)

This function reads the file at PATH, renders it as a template, and returns
the result as a string. When I say “renders it as a template,” what I mean is
that the file at PATH can use the string interpolation syntax in Terraform
(${...}), and Terraform will render the contents of that file, filling
variable references from VARS.

To see this in action, put the contents of the User Data script into the file
stage/services/webserver-cluster/user-data.sh as follows:

#!/bin/bash 
 
cat > index.xhtml <<EOF
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<h1>Hello, World</h1>
<p>DB address: ${db_address}</p>
<p>DB port: ${db_port}</p>
EOF 
 
nohup busybox httpd -f -p ${server_port} &

Note that this Bash script has a few changes from the original:

It looks up variables using Terraform’s standard interpolation syntax,
except the only variables it has access to are those you pass in via the
second parameter to templatefile (as you’ll see shortly), so you
don’t need any prefix to access them: for example, you should use
${server_port} and not ${var.server_port}.

The script now includes some HTML syntax (e.g., <h1>) to make the
output a bit more readable in a web browser.

The final step is to update the user_data parameter of the aws_launch 
_configuration resource to call the templatefile function and
pass in the variables it needs as a map:

resource "aws_launch_configuration" "example" {
  image_id        = "ami-0fb653ca2d3203ac1"
  instance_type   = "t2.micro"
  security_groups = [aws_security_group.instance.id] 
 
  # Render the User Data script as a template
  user_data = templatefile("user-data.sh", {
    server_port = var.server_port
    db_address  = data.terraform_remote_state.db.outputs.address
    db_port     = data.terraform_remote_state.db.outputs.port 
  }) 
 
  # Required when using a launch configuration with an auto 
scaling group. 
  lifecycle {
    create_before_destroy = true 
  }
}

Ah, that’s much cleaner than writing Bash scripts inline!



If you deploy this cluster using terraform apply, wait for the
Instances to register in the ALB, and open the ALB URL in a web browser,
you’ll see something similar to Figure 3-12.

Congrats, your web server cluster can now programmatically access the
database address and port via Terraform. If you were using a real web
framework (e.g., Ruby on Rails), you could set the address and port as
environment variables or write them to a config file so that they could be
used by your database library (e.g., ActiveRecord) to communicate with the
database.

Figure 3-12. The web server cluster can programmatically access the database address and port.

Conclusion
The reason you need to put so much thought into isolation, locking, and
state is that infrastructure as code (IaC) has different trade-offs than normal
coding. When you’re writing code for a typical app, most bugs are
relatively minor and break only a small part of a single app. When you’re
writing code that controls your infrastructure, bugs tend to be more severe,
given that they can break all of your apps—and all of your data stores, and



your entire network topology, and just about everything else. Therefore, I
recommend including more “safety mechanisms” when working on IaC
than with typical code.

A common concern of using the recommended file layout is that it leads to
code duplication. If you want to run the web server cluster in both staging
and production, how do you avoid having to copy and paste a lot of code
between stage/services/webserver-cluster and prod/services/webserver-
cluster? The answer is that you need to use Terraform modules, which are
the main topic of Chapter 4.

1  Learn more about S3’s guarantees on the AWS website.

2  See pricing information for S3 on the AWS website.

3  Pricing information for DynamoDB is available on the AWS website.

4  Here’s a colorful example of what happens when you don’t isolate Terraform state.

5  The workspaces documentation makes this same exact point, but it’s buried among several
paragraphs of text, and as workspaces used to be called “environments,” I find many users are
still confused about when and when not to use workspaces.

6  You can find documentation for the sprintf syntax on the Go website.

7  The full list of built-in functions is available on the Terraform website.

8  For more information on software safety mechanisms, see Agility Requires Safety.
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Chapter 4. How to Create
Reusable Infrastructure with
Terraform Modules

At the end of Chapter 3, you deployed the architecture shown in Figure 4-1.



Figure 4-1. The architecture you deployed in previous chapters included a load balancer, web server
cluster, and database.

This works great as a first environment, but you typically need at least two
environments: one for your team’s internal testing (“staging”) and one that



real users can access (“production”), as shown in Figure 4-2. Ideally, the
two environments are nearly identical, though you might run slightly
fewer/smaller servers in staging to save money.





Figure 4-2. The architecture you’ll deploy in this chapter will have two environments, each with its
own load balancer, web server cluster, and database.

How do you add this production environment without having to copy and
paste all of the code from staging? For example, how do you avoid having
to copy and paste all the code in stage/services/webserver-cluster into
prod/services/webserver-cluster and all the code in stage/data-stores/mysql
into prod/data-stores/mysql?

In a general-purpose programming language such as Ruby, if you had the
same code copied and pasted in several places, you could put that code
inside of a function and reuse that function everywhere:

# Define the function in one place
def example_function() 
  puts "Hello, World"
end 
 
# Use the function in multiple other places
example_function()

With Terraform, you can put your code inside of a Terraform module and
reuse that module in multiple places throughout your code. Instead of
having the same code copied and pasted in the staging and production
environments, you’ll be able to have both environments reuse code from the
same module, as shown in Figure 4-3.





Figure 4-3. Putting code into modules allows you to reuse that code from multiple environments.

This is a big deal. Modules are the key ingredient to writing reusable,
maintainable, and testable Terraform code. Once you start using them,
there’s no going back. You’ll start building everything as a module, creating
a library of modules to share within your company, using modules that you
find online, and thinking of your entire infrastructure as a collection of
reusable modules.

In this chapter, I’ll show you how to create and use Terraform modules by
covering the following topics:

Module basics

Module inputs

Module locals

Module outputs

Module gotchas

Module versioning

EXAMPLE CODE
As a reminder, you can find all of the code examples in the book on GitHub.

Module Basics
A Terraform module is very simple: any set of Terraform configuration files
in a folder is a module. All of the configurations you’ve written so far have
technically been modules, although not particularly interesting ones, since
you deployed them directly: if you run apply directly on a module, it’s
referred to as a root module. To see what modules are really capable of, you
need to create a reusable module, which is a module that is meant to be
used within other modules.

https://github.com/brikis98/terraform-up-and-running-code


As an example, let’s turn the code in stage/services/webserver-cluster,
which includes an Auto Scaling Group (ASG), Application Load Balancer
(ALB), security groups, and many other resources, into a reusable module.

As a first step, run terraform destroy in the
stage/services/webserver-cluster to clean up any resources that you created
earlier. Next, create a new top-level folder called modules, and move all of
the files from stage/services/webserver-cluster to
modules/services/webserver-cluster. You should end up with a folder
structure that looks something like Figure 4-4.

Open up the main.tf file in modules/services/webserver-cluster, and remove
the provider definition. Providers should be configured only in root
modules and not in reusable modules (you’ll learn a lot more about working
with providers in Chapter 7).





Figure 4-4. Move your reusable web server cluster code into a modules/services/web server-cluster
folder.

You can now make use of this module in the staging environment. Here’s
the syntax for using a module:

module "<NAME>" {
  source = "<SOURCE>" 
 
  [CONFIG ...]
}

where NAME is an identifier you can use throughout the Terraform code to
refer to this module (e.g., webserver_cluster), SOURCE is the path
where the module code can be found (e.g., modules/services/webserver-
cluster), and CONFIG consists of arguments that are specific to that
module. For example, you can create a new file in
stage/services/webserver-cluster/main.tf and use the webserver-
cluster module in it as follows:

provider "aws" {
  region = "us-east-2"
} 
 
module "webserver_cluster" {
  source = "../../../modules/services/webserver-cluster"
}

You can then reuse the exact same module in the production environment
by creating a new prod/services/webserver-cluster/main.tf file with the
following contents:

provider "aws" {
  region = "us-east-2"
} 
 
module "webserver_cluster" {
  source = "../../../modules/services/webserver-cluster"
}



And there you have it: code reuse in multiple environments that involves
minimal duplication. Note that whenever you add a module to your
Terraform configurations or modify the source parameter of a module,
you need to run the init command before you run plan or apply:

$ terraform init 
Initializing modules... 
- webserver_cluster in ../../../modules/services/webserver-
cluster 
 
Initializing the backend... 
 
Initializing provider plugins... 
 
Terraform has been successfully initialized!

Now you’ve seen all the tricks the init command has up its sleeve: it
installs providers, it configures your backends, and it downloads modules,
all in one handy command.

Before you run the apply command on this code, be aware that there is a
problem with the webserver-cluster module: all of the names are
hardcoded. That is, the name of the security groups, ALB, and other
resources are all hardcoded, so if you use this module more than once in the
same AWS account, you’ll get name conflict errors. Even the details for
how to read the database’s state are hardcoded because the main.tf file you
copied into modules/services/webserver-cluster is using a
terraform_remote_state data source to figure out the database
address and port, and that terraform_remote_state is hardcoded to
look at the staging environment.

To fix these issues, you need to add configurable inputs to the
webserver-cluster module so that it can behave differently in
different environments.

Module Inputs



To make a function configurable in a general-purpose programming
language such as Ruby, you can add input parameters to that function:

# A function with two input parameters
def example_function(param1, param2) 
  puts "Hello, #{param1} #{param2}"
end 
 
# Pass two input parameters to the function
example_function("foo", "bar")

In Terraform, modules can have input parameters, too. To define them, you
use a mechanism you’re already familiar with: input variables. Open up
modules/services/webserver-cluster/variables.tf and add three new input
variables:

variable "cluster_name" {
  description = "The name to use for all the cluster resources"
  type        = string
} 
 
variable "db_remote_state_bucket" {
  description = "The name of the S3 bucket for the database's 
remote state"
  type        = string
} 
 
variable "db_remote_state_key" {
  description = "The path for the database's remote state in S3"
  type        = string
}

Next, go through modules/services/webserver-cluster/main.tf, and use
var.cluster_name instead of the hardcoded names (e.g., instead of
"terraform-asg-example"). For example, here is how you do it for
the ALB security group:

resource "aws_security_group" "alb" {
  name = "${var.cluster_name}-alb" 
 
  ingress {
    from_port   = 80



    to_port     = 80
    protocol    = "tcp"
    cidr_blocks = ["0.0.0.0/0"] 
  } 
 
  egress {
    from_port   = 0
    to_port     = 0
    protocol    = "-1"
    cidr_blocks = ["0.0.0.0/0"] 
  }
}

Notice how the name parameter is set to "${var.cluster_name}-
alb". You’ll need to make a similar change to the other
aws_security_group resource (e.g., give it the name
"${var.cluster_name}-instance"), the aws_alb resource, and
the tag section of the aws_autoscaling_group resource.

You should also update the terraform_remote_state data source to
use the db_remote_state_bucket and db_remote_state_key
as its bucket and key parameter, respectively, to ensure you’re reading
the state file from the right environment:

data "terraform_remote_state" "db" {
  backend = "s3" 
 
  config = {
    bucket = var.db_remote_state_bucket
    key    = var.db_remote_state_key
    region = "us-east-2" 
  }
}

Now, in the staging environment, in stage/services/webserver-
cluster/main.tf, you can set these new input variables accordingly:

module "webserver_cluster" {
  source = "../../../modules/services/webserver-cluster" 
 
  cluster_name           = "webservers-stage"
  db_remote_state_bucket = "(YOUR_BUCKET_NAME)"



  db_remote_state_key    = "stage/data-
stores/mysql/terraform.tfstate"
}

You should also set these variables in the production environment in
prod/services/webserver-cluster/main.tf but to different values that
correspond to that environment:

module "webserver_cluster" {
  source = "../../../modules/services/webserver-cluster" 
 
  cluster_name           = "webservers-prod"
  db_remote_state_bucket = "(YOUR_BUCKET_NAME)"
  db_remote_state_key    = "prod/data-
stores/mysql/terraform.tfstate"
}

NOTE
The production database doesn’t actually exist yet. As an exercise, I leave it up to you to
add a production database similar to the staging one.

As you can see, you set input variables for a module by using the same
syntax as setting arguments for a resource. The input variables are the API
of the module, controlling how it will behave in different environments.

So far, you’ve added input variables for the name and database remote state,
but you may want to make other parameters configurable in your module,
too. For example, in staging, you might want to run a small web server
cluster to save money, but in production, you might want to run a larger
cluster to handle lots of traffic. To do that, you can add three more input
variables to modules/services/webserver-cluster/variables.tf:

variable "instance_type" {
  description = "The type of EC2 Instances to run (e.g. 
t2.micro)"
  type        = string
} 
 



variable "min_size" {
  description = "The minimum number of EC2 Instances in the ASG"
  type        = number
} 
 
variable "max_size" {
  description = "The maximum number of EC2 Instances in the ASG"
  type        = number
}

Next, update the launch configuration in modules/services/webserver-
cluster/main.tf to set its instance_type parameter to the new
var.instance_type input variable:

resource "aws_launch_configuration" "example" {
  image_id        = "ami-0fb653ca2d3203ac1"
  instance_type   = var.instance_type
  security_groups = [aws_security_group.instance.id] 
 
  user_data = templatefile("user-data.sh", {
    server_port = var.server_port
    db_address  = data.terraform_remote_state.db.outputs.address
    db_port     = data.terraform_remote_state.db.outputs.port 
  }) 
 
  # Required when using a launch configuration with an auto 
scaling group. 
  lifecycle {
    create_before_destroy = true 
  }
}

Similarly, you should update the ASG definition in the same file to set its
min_size and max_size parameters to the new var.min_size and
var.max_size input variables, respectively:

resource "aws_autoscaling_group" "example" {
  launch_configuration = aws_launch_configuration.example.name
  vpc_zone_identifier  = data.aws_subnets.default.ids
  target_group_arns    = [aws_lb_target_group.asg.arn]
  health_check_type    = "ELB" 
 
  min_size = var.min_size



  max_size = var.max_size 
 
  tag {
    key                 = "Name"
    value               = var.cluster_name
    propagate_at_launch = true 
  }
}

Now, in the staging environment (stage/services/webserver-cluster/main.tf),
you can keep the cluster small and inexpensive by setting
instance_type to "t2.micro" and min_size and max_size to
2:

module "webserver_cluster" {
  source = "../../../modules/services/webserver-cluster" 
 
  cluster_name           = "webservers-stage"
  db_remote_state_bucket = "(YOUR_BUCKET_NAME)"
  db_remote_state_key    = "stage/data-
stores/mysql/terraform.tfstate" 
 
  instance_type = "t2.micro"
  min_size      = 2
  max_size      = 2
}

On the other hand, in the production environment, you can use a larger
instance_type with more CPU and memory, such as m4.large (be
aware that this Instance type is not part of the AWS Free Tier, so if you’re
just using this for learning and don’t want to be charged, stick with
"t2.micro" for the instance_type), and you can set max_size to
10 to allow the cluster to shrink or grow depending on the load (don’t
worry, the cluster will launch with two Instances initially):

module "webserver_cluster" {
  source = "../../../modules/services/webserver-cluster" 
 
  cluster_name           = "webservers-prod"
  db_remote_state_bucket = "(YOUR_BUCKET_NAME)"
  db_remote_state_key    = "prod/data-



stores/mysql/terraform.tfstate" 
 
  instance_type = "m4.large"
  min_size      = 2
  max_size      = 10
}

Module Locals
Using input variables to define your module’s inputs is great, but what if
you need a way to define a variable in your module to do some
intermediary calculation, or just to keep your code DRY, but you don’t want
to expose that variable as a configurable input? For example, the load
balancer in the webserver-cluster module in
modules/services/webserver-cluster/main.tf listens on port 80, the default
port for HTTP. This port number is currently copied and pasted in multiple
places, including the load balancer listener:

resource "aws_lb_listener" "http" {
  load_balancer_arn = aws_lb.example.arn
  port              = 80
  protocol          = "HTTP" 
 
  # By default, return a simple 404 page 
  default_action {
    type = "fixed-response" 
 
    fixed_response {
      content_type = "text/plain"
      message_body = "404: page not found"
      status_code  = 404 
    } 
  }
}

And the load balancer security group:

resource "aws_security_group" "alb" {
  name = "${var.cluster_name}-alb" 
 
  ingress {



    from_port   = 80
    to_port     = 80
    protocol    = "tcp"
    cidr_blocks = ["0.0.0.0/0"] 
  } 
 
  egress {
    from_port   = 0
    to_port     = 0
    protocol    = "-1"
    cidr_blocks = ["0.0.0.0/0"] 
  }
}

The values in the security group, including the “all IPs” CIDR block
0.0.0.0/0, the “any port” value of 0, and the “any protocol” value of
"-1" are also copied and pasted in several places throughout the module.
Having these magical values hardcoded in multiple places makes the code
more difficult to read and maintain. You could extract values into input
variables, but then users of your module will be able to (accidentally)
override these values, which you might not want. Instead of using input
variables, you can define these as local values in a locals block:

locals {
  http_port    = 80
  any_port     = 0
  any_protocol = "-1"
  tcp_protocol = "tcp"
  all_ips      = ["0.0.0.0/0"]
}

Local values allow you to assign a name to any Terraform expression and to
use that name throughout the module. These names are visible only within
the module, so they will have no impact on other modules, and you can’t
override these values from outside of the module. To read the value of a
local, you need to use a local reference, which uses the following syntax:

local.<NAME>



Use this syntax to update the port parameter of your load-balancer
listener:

resource "aws_lb_listener" "http" {
  load_balancer_arn = aws_lb.example.arn
  port              = local.http_port
  protocol          = "HTTP" 
 
  # By default, return a simple 404 page 
  default_action {
    type = "fixed-response" 
 
    fixed_response {
      content_type = "text/plain"
      message_body = "404: page not found"
      status_code  = 404 
    } 
  }
}

Similarly, update virtually all the parameters in the security groups in the
module, including the load-balancer security group:

resource "aws_security_group" "alb" {
  name = "${var.cluster_name}-alb" 
 
  ingress {
    from_port   = local.http_port
    to_port     = local.http_port
    protocol    = local.tcp_protocol
    cidr_blocks = local.all_ips 
  } 
 
  egress {
    from_port   = local.any_port
    to_port     = local.any_port
    protocol    = local.any_protocol
    cidr_blocks = local.all_ips 
  }
}

Locals make your code easier to read and maintain, so use them often.



Module Outputs
A powerful feature of ASGs is that you can configure them to increase or
decrease the number of servers you have running in response to load. One
way to do this is to use a scheduled action, which can change the size of the
cluster at a scheduled time during the day. For example, if traffic to your
cluster is much higher during normal business hours, you can use a
scheduled action to increase the number of servers at 9 a.m. and decrease it
at 5 p.m.

If you define the scheduled action in the webserver-cluster module,
it would apply to both staging and production. Because you don’t need to
do this sort of scaling in your staging environment, for the time being, you
can define the auto scaling schedule directly in the production
configurations (in Chapter 5, you’ll see how to conditionally define
resources, which lets you move the scheduled action into the webserver-
cluster module).

To define a scheduled action, add the following two
aws_autoscaling_schedule resources to prod/services/webserver-
cluster/main.tf:

resource "aws_autoscaling_schedule" 
"scale_out_during_business_hours" {
  scheduled_action_name = "scale-out-during-business-hours"
  min_size              = 2
  max_size              = 10
  desired_capacity      = 10
  recurrence            = "0 9 * * *"
} 
 
resource "aws_autoscaling_schedule" "scale_in_at_night" {
  scheduled_action_name = "scale-in-at-night"
  min_size              = 2
  max_size              = 10
  desired_capacity      = 2
  recurrence            = "0 17 * * *"
}



This code uses one aws_autoscaling_schedule resource to increase
the number of servers to 10 during the morning hours (the recurrence
parameter uses cron syntax, so "0 9 * * *" means “9 a.m. every day”)
and a second aws_autoscaling_schedule resource to decrease the
number of servers at night ("0 17 * * *" means “5 p.m. every day”).
However, both usages of aws_autoscaling_schedule are missing a
required parameter, autoscaling_group_name, which specifies the
name of the ASG. The ASG itself is defined within the webserver-
cluster module, so how do you access its name? In a general-purpose
programming language such as Ruby, functions can return values:

# A function that returns a value
def example_function(param1, param2) 
  return "Hello, #{param1} #{param2}"
end 
 
# Call the function and get the return value
return_value = example_function("foo", "bar")

In Terraform, a module can also return values. Again, you do this using a
mechanism you already know: output variables. You can add the ASG name
as an output variable in /modules/services/webserver-cluster/outputs.tf as
follows:

output "asg_name" {
  value       = aws_autoscaling_group.example.name
  description = "The name of the Auto Scaling Group"
}

You can access module output variables using the following syntax:

module.<MODULE_NAME>.<OUTPUT_NAME>

For example:

module.frontend.asg_name



In prod/services/webserver-cluster/main.tf, you can use this syntax to set
the autoscaling_group_name parameter in each of the
aws_autoscaling_schedule resources:

resource "aws_autoscaling_schedule" 
"scale_out_during_business_hours" {
  scheduled_action_name = "scale-out-during-business-hours"
  min_size              = 2
  max_size              = 10
  desired_capacity      = 10
  recurrence            = "0 9 * * *" 
 
  autoscaling_group_name = module.webserver_cluster.asg_name
} 
 
resource "aws_autoscaling_schedule" "scale_in_at_night" {
  scheduled_action_name = "scale-in-at-night"
  min_size              = 2
  max_size              = 10
  desired_capacity      = 2
  recurrence            = "0 17 * * *" 
 
  autoscaling_group_name = module.webserver_cluster.asg_name
}

You might want to expose one other output in the webserver-cluster
module: the DNS name of the ALB, so you know what URL to test when
the cluster is deployed. To do that, you again add an output variable in
/modules/services/webserver-cluster/outputs.tf:

output "alb_dns_name" {
  value       = aws_lb.example.dns_name
  description = "The domain name of the load balancer"
}

You can then “pass through” this output in stage/services/webserver-
cluster/outputs.tf and prod/services/webserver-cluster/outputs.tf as follows:

output "alb_dns_name" {
  value       = module.webserver_cluster.alb_dns_name
  description = "The domain name of the load balancer"
}



Your web server cluster is almost ready to deploy. The only thing left is to
take a few gotchas into account.

Module Gotchas
When creating modules, watch out for these gotchas:

File paths

Inline blocks

File Paths
In Chapter 3, you moved the User Data script for the web server cluster into
an external file, user-data.sh, and used the templatefile built-in
function to read this file from disk. The catch with the templatefile
function is that the filepath you use must be a relative path (you don’t want
to use absolute file paths, as your Terraform code may run on many
different computers, each with a different disk layout)—but what is it
relative to?

By default, Terraform interprets the path relative to the current working
directory. That works if you’re using the templatefile function in a
Terraform configuration file that’s in the same directory as where you’re
running terraform apply (that is, if you’re using the
templatefile function in the root module), but that won’t work when
you’re using templatefile in a module that’s defined in a separate
folder (a reusable module).

To solve this issue, you can use an expression known as a path reference,
which is of the form path.<TYPE>. Terraform supports the following
types of path references:

path.module

Returns the filesystem path of the module where the expression is
defined.



path.root

Returns the filesystem path of the root module.

path.cwd

Returns the filesystem path of the current working directory. In normal
use of Terraform, this is the same as path.root, but some advanced
uses of Terraform run it from a directory other than the root module
directory, causing these paths to be different.

For the User Data script, you need a path relative to the module itself, so
you should use path.module when calling the templatefile
function in modules/services/webserver-cluster/main.tf:

  user_data = templatefile("${path.module}/user-data.sh", {
    server_port = var.server_port
    db_address  = data.terraform_remote_state.db.outputs.address
    db_port     = data.terraform_remote_state.db.outputs.port 
  })

Inline Blocks
The configuration for some Terraform resources can be defined either as
inline blocks or as separate resources. An inline block is an argument you
set within a resource of the format:

resource "xxx" "yyy" { 
  <NAME> { 
    [CONFIG...] 
  }
}

where NAME is the name of the inline block (e.g., ingress) and CONFIG
consists of one or more arguments that are specific to that inline block (e.g.,
from_port and to_port). For example, with the
aws_security_group_resource, you can define ingress and egress



rules using either inline blocks (e.g., ingress { … }) or separate
aws_security_group_rule resources.

If you try to use a mix of both inline blocks and separate resources, due to
how Terraform is designed, you will get errors where the configurations
conflict and overwrite one another. Therefore, you must use one or the
other. Here’s my advice: when creating a module, you should always prefer
using separate resources.

The advantage of using separate resources is that they can be added
anywhere, whereas an inline block can only be added within the module
that creates a resource. So using solely separate resources makes your
module more flexible and configurable.

For example, in the webserver-cluster module
(modules/services/webserver-cluster/main.tf), you used inline blocks to
define ingress and egress rules:

resource "aws_security_group" "alb" {
  name = "${var.cluster_name}-alb" 
 
  ingress {
    from_port   = local.http_port
    to_port     = local.http_port
    protocol    = local.tcp_protocol
    cidr_blocks = local.all_ips 
  } 
 
  egress {
    from_port   = local.any_port
    to_port     = local.any_port
    protocol    = local.any_protocol
    cidr_blocks = local.all_ips 
  }
}

With these inline blocks, a user of this module has no way to add additional
ingress or egress rules from outside the module. To make your module more
flexible, you should change it to define the exact same ingress and egress



rules by using separate aws_security_group_rule resources (make
sure to do this for both security groups in the module):

resource "aws_security_group" "alb" {
  name = "${var.cluster_name}-alb"
} 
 
resource "aws_security_group_rule" "allow_http_inbound" {
  type              = "ingress"
  security_group_id = aws_security_group.alb.id 
 
  from_port   = local.http_port
  to_port     = local.http_port
  protocol    = local.tcp_protocol
  cidr_blocks = local.all_ips
} 
 
resource "aws_security_group_rule" "allow_all_outbound" {
  type              = "egress"
  security_group_id = aws_security_group.alb.id 
 
  from_port   = local.any_port
  to_port     = local.any_port
  protocol    = local.any_protocol
  cidr_blocks = local.all_ips
}

You should also export the ID of the aws_security_group as an
output variable in modules/services/webserver-cluster/outputs.tf:

output "alb_security_group_id" {
  value       = aws_security_group.alb.id
  description = "The ID of the Security Group attached to the 
load balancer"
}

Now, if you needed to expose an extra port in just the staging environment
(e.g., for testing), you can do this by adding an
aws_security_group_rule resource to stage/services/webserver-
cluster/main.tf:



module "webserver_cluster" {
  source = "../../../modules/services/webserver-cluster" 
 
  # (parameters hidden for clarity)
} 
 
resource "aws_security_group_rule" "allow_testing_inbound" {
  type              = "ingress"
  security_group_id = 
module.webserver_cluster.alb_security_group_id 
 
  from_port   = 12345
  to_port     = 12345
  protocol    = "tcp"
  cidr_blocks = ["0.0.0.0/0"]
}

Had you defined even a single ingress or egress rule as an inline block, this
code would not work. Note that this same type of problem affects a number
of Terraform resources, such as the following:

aws_security_group and aws_security_group_rule

aws_route_table and aws_route

aws_network_acl and aws_network_acl_rule

At this point, you are finally ready to deploy your web server cluster in both
staging and production. Run terraform apply as usual, and enjoy
using two separate copies of your infrastructure.



NETWORK ISOLATION
The examples in this chapter create two environments that are isolated
in your Terraform code, as well as isolated in terms of having separate
load balancers, servers, and databases, but they are not isolated at the
network level. To keep all the examples in this book simple, all of the
resources deploy into the same VPC. This means that a server in the
staging environment can communicate with a server in the production
environment, and vice versa.

In real-world usage, running both environments in one VPC opens you
up to two risks. First, a mistake in one environment could affect the
other. For example, if you’re making changes in staging and
accidentally mess up the configuration of the route tables, all the
routing in production can be affected, too. Second, if an attacker gains
access to one environment, they also have access to the other. If you’re
making rapid changes in staging and accidentally leave a port exposed,
any hacker that broke in would have access to not only your staging
data but also your production data.

Therefore, outside of simple examples and experiments, you should run
each environment in a separate VPC. In fact, to be extra sure, you might
even run each environment in a totally separate AWS account.

Module Versioning
If both your staging and production environment are pointing to the same
module folder, as soon as you make a change in that folder, it will affect
both environments on the very next deployment. This sort of coupling
makes it more difficult to test a change in staging without any chance of
affecting production. A better approach is to create versioned modules so
that you can use one version in staging (e.g., v0.0.2) and a different version
in production (e.g., v0.0.1), as shown in Figure 4-5.



In all of the module examples you’ve seen so far, whenever you used a
module, you set the source parameter of the module to a local filepath. In
addition to file paths, Terraform supports other types of module sources,
such as Git URLs, Mercurial URLs, and arbitrary HTTP URLs.1





Figure 4-5. By versioning your modules, you can use different versions in different environments:
e.g., v0.0.1 in prod and v0.0.2 in stage.

The easiest way to create a versioned module is to put the code for the
module in a separate Git repository and to set the source parameter to that
repository’s URL. That means your Terraform code will be spread out
across (at least) two repositories:

modules

This repo defines reusable modules. Think of each module as a
“blueprint” that defines a specific part of your infrastructure.

live

This repo defines the live infrastructure you’re running in each
environment (stage, prod, mgmt, etc.). Think of this as the “houses” you
built from the “blueprints” in the modules repo.

The updated folder structure for your Terraform code now looks something
like Figure 4-6.





Figure 4-6. You should store reusable, versioned modules in one repo (modules) and the
configuration for your live environments in another repo (live).

To set up this folder structure, you’ll first need to move the stage, prod, and
global folders into a folder called live. Next, configure the live and modules
folders as separate Git repositories. Here is an example of how to do that for
the modules folder:

$ cd modules 
$ git init 
$ git add . 
$ git commit -m "Initial commit of modules repo" 
$ git remote add origin "(URL OF REMOTE GIT REPOSITORY)" 
$ git push origin main

You can also add a tag to the modules repo to use as a version number. If
you’re using GitHub, you can use the GitHub UI to create a release, which
will create a tag under the hood.

If you’re not using GitHub, you can use the Git CLI:

$ git tag -a "v0.0.1" -m "First release of webserver-cluster 
module" 
$ git push --follow-tags

Now you can use this versioned module in both staging and production by
specifying a Git URL in the source parameter. Here is what that would
look like in live/stage/services/webserver-cluster/main.tf if your modules
repo was in the GitHub repo github.com/foo/modules (note that the double-
slash in the following Git URL is required):

module "webserver_cluster" {
  source = "github.com/foo/modules//services/webserver-cluster?
ref=v0.0.1" 
 
  cluster_name           = "webservers-stage"
  db_remote_state_bucket = "(YOUR_BUCKET_NAME)"
  db_remote_state_key    = "stage/data-
stores/mysql/terraform.tfstate" 
 
  instance_type = "t2.micro"

https://bit.ly/2Yv8kPg


  min_size      = 2
  max_size      = 2
}

If you want to try out versioned modules without messing with Git repos,
you can use a module from the code examples GitHub repo for this book (I
had to break up the URL to make it fit in the book, but it should all be on
one line):

source = "github.com/brikis98/terraform-up-and-running-code// 
  code/terraform/04-terraform-module/module-example/modules/ 
  services/webserver-cluster?ref=v0.3.0"

The ref parameter allows you to specify a particular Git commit via its
sha1 hash, a branch name, or, as in this example, a specific Git tag. I
generally recommend using Git tags as version numbers for modules.
Branch names are not stable, as you always get the latest commit on a
branch, which may change every time you run the init command, and the
sha1 hashes are not very human friendly. Git tags are as stable as a commit
(in fact, a tag is just a pointer to a commit), but they allow you to use a
friendly, readable name.

A particularly useful naming scheme for tags is semantic versioning. This is
a versioning scheme of the format MAJOR.MINOR.PATCH (e.g., 1.0.4)
with specific rules on when you should increment each part of the version
number. In particular, you should increment the following:

The MAJOR version when you make incompatible API changes

The MINOR version when you add functionality in a backward-
compatible manner

The PATCH version when you make backward-compatible bug fixes

Semantic versioning gives you a way to communicate to users of your
module what kinds of changes you’ve made and the implications of
upgrading.

https://github.com/brikis98/terraform-up-and-running-code


Because you’ve updated your Terraform code to use a versioned module
URL, you need to instruct Terraform to download the module code by
rerunning terraform init:

$ terraform init 
Initializing modules... 
Downloading git@github.com:brikis98/terraform-up-and-running-
code.git?ref=v0.3.0 
for webserver_cluster... 
 
(...)

This time, you can see that Terraform downloads the module code from Git
rather than your local filesystem. After the module code has been
downloaded, you can run the apply command as usual.

PRIVATE GIT REPOS
If your Terraform module is in a private Git repository, to use that repo as a module
source, you need to give Terraform a way to authenticate to that Git repository. I
recommend using SSH auth so that you don’t need to hardcode the credentials for your
repo in the code itself. With SSH authentication, each developer can create an SSH key,
associate it with their Git user, add it to ssh-agent, and Terraform will automatically
use that key for authentication if you use an SSH source URL.

The source URL should be of the form:

git@github.com:<OWNER>/<REPO>.git//<PATH>?ref=<VERSION>

For example:

git@github.com:acme/modules.git//example?ref=v0.1.2

To check that you’ve formatted the URL correctly, try to git clone the base URL
from your terminal:

$ git clone git@github.com:acme/modules.git

If that command succeeds, Terraform should be able to use the private repo, too.

2



Now that you’re using versioned modules, let’s walk through the process of
making changes. Let’s say you made some changes to the webserver-
cluster module, and you want to test them out in staging. First, you’d
commit those changes to the modules repo:

$ cd modules 
$ git add . 
$ git commit -m "Made some changes to webserver-cluster" 
$ git push origin main

Next, you would create a new tag in the modules repo:

$ git tag -a "v0.0.2" -m "Second release of webserver-cluster" 
$ git push --follow-tags

And now you can update just the source URL used in the staging
environment (live/stage/services/webserver-cluster/main.tf) to use this new
version:

module "webserver_cluster" {
  source = "github.com/foo/modules//services/webserver-cluster?
ref=v0.0.2" 
 
  cluster_name           = "webservers-stage"
  db_remote_state_bucket = "(YOUR_BUCKET_NAME)"
  db_remote_state_key    = "stage/data-
stores/mysql/terraform.tfstate" 
 
  instance_type = "t2.micro"
  min_size      = 2
  max_size      = 2
}

In production (live/prod/services/webserver-cluster/main.tf), you can
happily continue to run v0.0.1 unchanged:

module "webserver_cluster" {
  source = "github.com/foo/modules//services/webserver-cluster?
ref=v0.0.1" 
 
  cluster_name           = "webservers-prod"



  db_remote_state_bucket = "(YOUR_BUCKET_NAME)"
  db_remote_state_key    = "prod/data-
stores/mysql/terraform.tfstate" 
 
  instance_type = "m4.large"
  min_size      = 2
  max_size      = 10
}

After v0.0.2 has been thoroughly tested and proven in staging, you can then
update production, too. But if there turns out to be a bug in v0.0.2, no big
deal, because it has no effect on the real users of your production
environment. Fix the bug, release a new version, and repeat the entire
process again until you have something stable enough for production.

DEVELOPING MODULES
Versioned modules are great when you’re deploying to a shared environment (e.g.,
staging or production), but when you’re just testing on your own computer, you’ll want
to use local file paths. This allows you to iterate faster, because you’ll be able to make a
change in the module folders and rerun the plan or apply command in the live
folders immediately, rather than having to commit your code, publish a new version, and
rerun init each time.

Since the goal of this book is to help you learn and experiment with Terraform as
quickly as possible, the rest of the code examples will use local file paths for modules.

Conclusion
By defining infrastructure as code in modules, you can apply a variety of
software engineering best practices to your infrastructure. You can validate
each change to a module through code reviews and automated tests, you can
create semantically versioned releases of each module, and you can safely
try out different versions of a module in different environments and roll
back to previous versions if you hit a problem.

All of this can dramatically increase your ability to build infrastructure
quickly and reliably because developers will be able to reuse entire pieces



of proven, tested, and documented infrastructure. For example, you could
create a canonical module that defines how to deploy a single microservice
—including how to run a cluster, how to scale the cluster in response to
load, and how to distribute traffic requests across the cluster—and each
team could use this module to manage their own microservices with just a
few lines of code.

To make such a module work for multiple teams, the Terraform code in that
module must be flexible and configurable. For example, one team might
want to use your module to deploy a single Instance of their microservice
with no load balancer, whereas another might want a dozen Instances of
their microservice with a load balancer to distribute traffic between those
Instances. How do you do conditional statements in Terraform? Is there a
way to do a for-loop? Is there a way to use Terraform to roll out changes to
this microservice without downtime? These advanced aspects of Terraform
syntax are the topic of Chapter 5.

1  For the full details on source URLs, see the Terraform website.

2  See the GitHub documentation for a nice guide on working with SSH keys.

https://oreil.ly/buyX7
https://bit.ly/2ZFLJwe


Chapter 5. Terraform Tips and
Tricks: Loops, If-Statements,
Deployment, and Gotchas

Terraform is a declarative language. As discussed in Chapter 1, IaC in a
declarative language tends to provide a more accurate view of what’s
actually deployed than a procedural language, so it’s easier to reason about
and makes it easier to keep the codebase small. However, certain types of
tasks are more difficult in a declarative language.

For example, because declarative languages typically don’t have for-loops,
how do you repeat a piece of logic—such as creating multiple similar
resources—without copy and paste? And if the declarative language doesn’t
support if-statements, how can you conditionally configure resources, such
as creating a Terraform module that can create certain resources for some
users of that module but not for others? Finally, how do you express an
inherently procedural idea, such as a zero-downtime deployment, in a
declarative language?

Fortunately, Terraform provides a few primitives—namely, the meta-
parameter count, for_each and for expressions, a ternary operator, a
lifecycle block called create_before_destroy, and a large number
of functions—that allow you to do certain types of loops, if-statements, and
zero-downtime deployments. Here are the topics I’ll cover in this chapter:

Loops

Conditionals

Zero-downtime deployment

Terraform gotchas



EXAMPLE CODE
As a reminder, you can find all of the code examples in the book on GitHub.

Loops
Terraform offers several different looping constructs, each intended to be
used in a slightly different scenario:

count parameter, to loop over resources and modules

for_each expressions, to loop over resources, inline blocks within a
resource, and modules

for expressions, to loop over lists and maps

for string directive, to loop over lists and maps within a string

Let’s go through these one at a time.

Loops with the count Parameter
In Chapter 2, you created an AWS Identity and Access Management (IAM)
user by clicking around the Console. Now that you have this user, you can
create and manage all future IAM users with Terraform. Consider the
following Terraform code, which should live in live/global/iam/main.tf:

provider "aws" {
  region = "us-east-2"
} 
 
resource "aws_iam_user" "example" {
  name = "neo"
}

This code uses the aws_iam_user resource to create a single new IAM
user. What if you want to create three IAM users? In a general-purpose
programming language, you’d probably use a for-loop:

https://github.com/brikis98/terraform-up-and-running-code


# This is just pseudo code. It won't actually work in Terraform.
for (i = 0; i < 3; i++) { 
  resource "aws_iam_user" "example" {
    name = "neo" 
  }
}

Terraform does not have for-loops or other traditional procedural logic built
into the language, so this syntax will not work. However, every Terraform
resource has a meta-parameter you can use called count. count is
Terraform’s oldest, simplest, and most limited iteration construct: all it does
is define how many copies of the resource to create. Here’s how you use
count to create three IAM users:

resource "aws_iam_user" "example" {
  count = 3
  name  = "neo"
}

One problem with this code is that all three IAM users would have the same
name, which would cause an error, since usernames must be unique. If you
had access to a standard for-loop, you might use the index in the for-loop,
i, to give each user a unique name:

# This is just pseudo code. It won't actually work in Terraform.
for (i = 0; i < 3; i++) { 
  resource "aws_iam_user" "example" {
    name = "neo.${i}" 
  }
}

To accomplish the same thing in Terraform, you can use count.index to
get the index of each “iteration” in the “loop”:

resource "aws_iam_user" "example" {
  count = 3
  name  = "neo.${count.index}"
}



If you run the plan command on the preceding code, you will see that
Terraform wants to create three IAM users, each with a different name
("neo.0", "neo.1", "neo.2"):

Terraform will perform the following actions: 
 
  # aws_iam_user.example[0] will be created 
  + resource "aws_iam_user" "example" { 
      + name          = "neo.0" 
      (...) 
    } 
 
  # aws_iam_user.example[1] will be created 
  + resource "aws_iam_user" "example" { 
      + name          = "neo.1" 
      (...) 
    } 
 
  # aws_iam_user.example[2] will be created 
  + resource "aws_iam_user" "example" { 
      + name          = "neo.2" 
      (...) 
    } 
 
Plan: 3 to add, 0 to change, 0 to destroy.

Of course, a username like "neo.0" isn’t particularly usable. If you
combine count.index with some built-in functions from Terraform, you
can customize each “iteration” of the “loop” even more.

For example, you could define all of the IAM usernames you want in an
input variable in live/global/iam/variables.tf:

variable "user_names" {
  description = "Create IAM users with these names"
  type        = list(string)
  default     = ["neo", "trinity", "morpheus"]
}

If you were using a general-purpose programming language with loops and
arrays, you would configure each IAM user to use a different name by
looking up index i in the array var.user_names:



# This is just pseudo code. It won't actually work in Terraform.
for (i = 0; i < 3; i++) { 
  resource "aws_iam_user" "example" {
    name = vars.user_names[i] 
  }
}

In Terraform, you can accomplish the same thing by using count along
with the following:

Array lookup syntax

The syntax for looking up members of an array in Terraform is similar
to most other programming languages:

ARRAY[<INDEX>]

For example, here’s how you would look up the element at index 1 of
var.user_names:

var.user_names[1]

The length function

Terraform has a built-in function called length that has the following
syntax:

length(<ARRAY>)

As you can probably guess, the length function returns the number of
items in the given ARRAY. It also works with strings and maps.

Putting these together, you get the following:

resource "aws_iam_user" "example" {
  count = length(var.user_names)



  name  = var.user_names[count.index]
}

Now when you run the plan command, you’ll see that Terraform wants to
create three IAM users, each with a unique, readable name:

Terraform will perform the following actions: 
 
  # aws_iam_user.example[0] will be created 
  + resource "aws_iam_user" "example" { 
      + name          = "neo" 
      (...) 
    } 
 
  # aws_iam_user.example[1] will be created 
  + resource "aws_iam_user" "example" { 
      + name          = "trinity" 
      (...) 
    } 
 
  # aws_iam_user.example[2] will be created 
  + resource "aws_iam_user" "example" { 
      + name          = "morpheus" 
      (...) 
    } 
 
Plan: 3 to add, 0 to change, 0 to destroy.

Note that after you’ve used count on a resource, it becomes an array of
resources rather than just one resource. Because
aws_iam_user.example is now an array of IAM users, instead of
using the standard syntax to read an attribute from that resource
(<PROVIDER>_<TYPE>.<NAME>.<ATTRIBUTE>), you must specify
which IAM user you’re interested in by specifying its index in the array
using the same array lookup syntax:

<PROVIDER>_<TYPE>.<NAME>[INDEX].ATTRIBUTE

For example, if you want to provide the Amazon Resource Name (ARN) of
the first IAM user in the list as an output variable, you would need to do the
following:



output "first_arn" {
  value       = aws_iam_user.example[0].arn
  description = "The ARN for the first user"
}

If you want the ARNs of all of the IAM users, you need to use a splat
expression, “*”, instead of the index:

output "all_arns" {
  value       = aws_iam_user.example[*].arn
  description = "The ARNs for all users"
}

When you run the apply command, the first_arn output will contain
just the ARN for neo, whereas the all_arns output will contain the list
of all ARNs:

$ terraform apply 
 
(...) 
 
Apply complete! Resources: 3 added, 0 changed, 0 destroyed. 
 
Outputs: 
 
first_arn = "arn:aws:iam::123456789012:user/neo" 
all_arns = [ 
  "arn:aws:iam::123456789012:user/neo", 
  "arn:aws:iam::123456789012:user/trinity", 
  "arn:aws:iam::123456789012:user/morpheus", 
]

As of Terraform 0.13, the count parameter can also be used on modules.
For example, imagine you had a module at modules/landing-zone/iam-user
that can create a single IAM user:

resource "aws_iam_user" "example" {
  name = var.user_name
}

The username is passed into this module as an input variable:



variable "user_name" {
  description = "The user name to use"
  type        = string
}

And the module returns the ARN of the created IAM user as an output
variable:

output "user_arn" {
  value       = aws_iam_user.example.arn
  description = "The ARN of the created IAM user"
}

You could use this module with a count parameter to create three IAM
users as follows:

module "users" {
  source = "../../../modules/landing-zone/iam-user" 
 
  count     = length(var.user_names)
  user_name = var.user_names[count.index]
}

The preceding code uses count to loop over this list of usernames:

variable "user_names" {
  description = "Create IAM users with these names"
  type        = list(string)
  default     = ["neo", "trinity", "morpheus"]
}

And it outputs the ARNs of the created IAM users as follows:

output "user_arns" {
  value       = module.users[*].user_arn
  description = "The ARNs of the created IAM users"
}

Just as adding count to a resource turns it into an array of resources,
adding count to a module turns it into an array of modules.



If you run apply on this code, you’ll get the following output:

$ terraform apply 
 
(...) 
 
Apply complete! Resources: 3 added, 0 changed, 0 destroyed. 
 
Outputs: 
 
all_arns = [ 
  "arn:aws:iam::123456789012:user/neo", 
  "arn:aws:iam::123456789012:user/trinity", 
  "arn:aws:iam::123456789012:user/morpheus", 
]

So, as you can see, count works more or less identically with resources
and with modules.

Unfortunately, count has two limitations that significantly reduce its
usefulness. First, although you can use count to loop over an entire
resource, you can’t use count within a resource to loop over inline blocks.

For example, consider how tags are set in the
aws_autoscaling_group resource:

resource "aws_autoscaling_group" "example" {
  launch_configuration = aws_launch_configuration.example.name
  vpc_zone_identifier  = data.aws_subnets.default.ids
  target_group_arns    = [aws_lb_target_group.asg.arn]
  health_check_type    = "ELB" 
 
  min_size = var.min_size
  max_size = var.max_size 
 
  tag {
    key                 = "Name"
    value               = var.cluster_name
    propagate_at_launch = true 
  }
}



Each tag requires you to create a new inline block with values for key,
value, and propagate_at_launch. The preceding code hardcodes a
single tag, but you might want to allow users to pass in custom tags. You
might be tempted to try to use the count parameter to loop over these tags
and generate dynamic inline tag blocks, but unfortunately, using count
within an inline block is not supported.

The second limitation with count is what happens when you try to change
its value. Consider the list of IAM users you created earlier:

variable "user_names" {
  description = "Create IAM users with these names"
  type        = list(string)
  default     = ["neo", "trinity", "morpheus"]
}

Imagine that you removed "trinity" from this list. What happens when
you run terraform plan?

$ terraform plan 
 
(...) 
 
Terraform will perform the following actions: 
 
  # aws_iam_user.example[1] will be updated in-place 
  ~ resource "aws_iam_user" "example" { 
        id            = "trinity" 
      ~ name          = "trinity" -> "morpheus" 
    } 
 
  # aws_iam_user.example[2] will be destroyed 
  - resource "aws_iam_user" "example" { 
      - id            = "morpheus" -> null 
      - name          = "morpheus" -> null 
    } 
 
Plan: 0 to add, 1 to change, 1 to destroy.

Wait a second, that’s probably not what you were expecting! Instead of just
deleting the "trinity" IAM user, the plan output is indicating that



Terraform wants to rename the "trinity" IAM user to "morpheus"
and delete the original "morpheus" user. What’s going on?

When you use the count parameter on a resource, that resource becomes
an array of resources. Unfortunately, the way Terraform identifies each
resource within the array is by its position (index) in that array. That is,
after running apply the first time with three usernames, Terraform’s
internal representation of these IAM users looks something like this:

aws_iam_user.example[0]: neo 
aws_iam_user.example[1]: trinity 
aws_iam_user.example[2]: morpheus

When you remove an item from the middle of an array, all the items after it
shift back by one, so after running plan with just two bucket names,
Terraform’s internal representation will look something like this:

aws_iam_user.example[0]: neo 
aws_iam_user.example[1]: morpheus

Notice how "morpheus" has moved from index 2 to index 1. Because it
sees the index as a resource’s identity, to Terraform, this change roughly
translates to “rename the bucket at index 1 to morpheus and delete the
bucket at index 2.” In other words, every time you use count to create a
list of resources, if you remove an item from the middle of the list,
Terraform will delete every resource after that item and then re-create those
resources again from scratch. Ouch. The end result, of course, is exactly
what you requested (i.e., two IAM users named "morpheus" and
"neo"), but deleting resources is probably not how you want to get there,
as you may lose availability (you can’t use the IAM user during the
apply), and, even worse, you may lose data (if the resource you’re
deleting is a database, you may lose all the data in it!).

To solve these two limitations, Terraform 0.12 introduced for_each
expressions.



Loops with for_each Expressions
The for_each expression allows you to loop over lists, sets, and maps to
create (a) multiple copies of an entire resource, (b) multiple copies of an
inline block within a resource, or (c) multiple copies of a module. Let’s first
walk through how to use for_each to create multiple copies of a
resource.

The syntax looks like this:

resource "<PROVIDER>_<TYPE>" "<NAME>" {
  for_each = <COLLECTION> 
 
  [CONFIG ...]
}

where COLLECTION is a set or map to loop over (lists are not supported
when using for_each on a resource) and CONFIG consists of one or
more arguments that are specific to that resource. Within CONFIG, you can
use each.key and each.value to access the key and value of the
current item in COLLECTION.

For example, here’s how you can create the same three IAM users using
for_each on a resource:

resource "aws_iam_user" "example" {
  for_each = toset(var.user_names)
  name     = each.value
}

Note the use of toset to convert the var.user_names list into a set.
This is because for_each supports sets and maps only when used on a
resource. When for_each loops over this set, it makes each username
available in each.value. The username will also be available in
each.key, though you typically use each.key only with maps of key-
value pairs.



Once you’ve used for_each on a resource, it becomes a map of
resources, rather than just one resource (or an array of resources as with
count). To see what that means, remove the original all_arns and
first_arn output variables, and add a new all_users output variable:

output "all_users" {
  value = aws_iam_user.example
}

Here’s what happens when you run terraform apply:

$ terraform apply 
 
(...) 
 
Apply complete! Resources: 3 added, 0 changed, 0 destroyed. 
 
Outputs: 
 
all_users = { 
  "morpheus" = { 
    "arn" = "arn:aws:iam::123456789012:user/morpheus" 
    "force_destroy" = false 
    "id" = "morpheus" 
    "name" = "morpheus" 
    "path" = "/" 
    "tags" = {} 
  } 
  "neo" = { 
    "arn" = "arn:aws:iam::123456789012:user/neo" 
    "force_destroy" = false 
    "id" = "neo" 
    "name" = "neo" 
    "path" = "/" 
    "tags" = {} 
  } 
  "trinity" = { 
    "arn" = "arn:aws:iam::123456789012:user/trinity" 
    "force_destroy" = false 
    "id" = "trinity" 
    "name" = "trinity" 
    "path" = "/" 
    "tags" = {} 



  } 
}

You can see that Terraform created three IAM users and that the
all_users output variable contains a map where the keys are the keys in
for_each (in this case, the usernames) and the values are all the outputs
for that resource. If you want to bring back the all_arns output variable,
you’d need to do a little extra work to extract those ARNs using the
values built-in function (which returns just the values from a map) and a
splat expression:

output "all_arns" {
  value = values(aws_iam_user.example)[*].arn
}

This gives you the expected output:

$ terraform apply 
 
(...) 
 
Apply complete! Resources: 0 added, 0 changed, 0 destroyed. 
 
Outputs: 
 
all_arns = [ 
  "arn:aws:iam::123456789012:user/morpheus", 
  "arn:aws:iam::123456789012:user/neo", 
  "arn:aws:iam::123456789012:user/trinity", 
]

The fact that you now have a map of resources with for_each rather than
an array of resources as with count is a big deal, because it allows you to
remove items from the middle of a collection safely. For example, if you
again remove "trinity" from the middle of the var.user_names list
and run terraform plan, here’s what you’ll see:

$ terraform plan 
 
Terraform will perform the following actions: 



 
  # aws_iam_user.example["trinity"] will be destroyed 
  - resource "aws_iam_user" "example" { 
      - arn           = "arn:aws:iam::123456789012:user/trinity" 
-> null 
      - name          = "trinity" -> null 
    } 
 
Plan: 0 to add, 0 to change, 1 to destroy.

That’s more like it! You’re now deleting solely the exact resource you want,
without shifting all of the other ones around. This is why you should almost
always prefer to use for_each instead of count to create multiple
copies of a resource.

for_each works with modules in a more or less identical fashion. Using
the iam-user module from earlier, you can create three IAM users with it
using for_each as follows:

module "users" {
  source = "../../../modules/landing-zone/iam-user" 
 
  for_each  = toset(var.user_names)
  user_name = each.value
}

And you can output the ARNs of those users as follows:

output "user_arns" {
  value       = values(module.users)[*].user_arn
  description = "The ARNs of the created IAM users"
}

When you run apply on this code, you get the expected output:

$ terraform apply 
 
(...) 
 
Apply complete! Resources: 3 added, 0 changed, 0 destroyed. 
 
Outputs: 



 
all_arns = [ 
  "arn:aws:iam::123456789012:user/morpheus", 
  "arn:aws:iam::123456789012:user/neo", 
  "arn:aws:iam::123456789012:user/trinity", 
]

Let’s now turn our attention to another advantage of for_each: its ability
to create multiple inline blocks within a resource. For example, you can use
for_each to dynamically generate tag inline blocks for the ASG in the
webserver-cluster module. First, to allow users to specify custom
tags, add a new map input variable called custom_tags in
modules/services/webserver-cluster/variables.tf:

variable "custom_tags" {
  description = "Custom tags to set on the Instances in the ASG"
  type        = map(string)
  default     = {}
}

Next, set some custom tags in the production environment, in
live/prod/services/webserver-cluster/main.tf, as follows:

module "webserver_cluster" {
  source = "../../../../modules/services/webserver-cluster" 
 
  cluster_name           = "webservers-prod"
  db_remote_state_bucket = "(YOUR_BUCKET_NAME)"
  db_remote_state_key    = "prod/data-
stores/mysql/terraform.tfstate" 
 
  instance_type        = "m4.large"
  min_size             = 2
  max_size             = 10 
 
  custom_tags = {
    Owner     = "team-foo"
    ManagedBy = "terraform" 
  }
}



The preceding code sets a couple of useful tags: the Owner tag specifies
which team owns this ASG, and the ManagedBy tag specifies that this
infrastructure is managed using Terraform (indicating that this infrastructure
shouldn’t be modified manually).

Now that you’ve specified your tags, how do you actually set them on the
aws_autoscaling_group resource? What you need is a for-loop over
var.custom_tags, similar to the following pseudocode:

resource "aws_autoscaling_group" "example" {
  launch_configuration = aws_launch_configuration.example.name
  vpc_zone_identifier  = data.aws_subnets.default.ids
  target_group_arns    = [aws_lb_target_group.asg.arn]
  health_check_type    = "ELB" 
 
  min_size = var.min_size
  max_size = var.max_size 
 
  tag {
    key                 = "Name"
    value               = var.cluster_name
    propagate_at_launch = true 
  } 
 
  # This is just pseudo code. It won't actually work in 
Terraform. 
  for (tag in var.custom_tags) { 
    tag {
      key                 = tag.key
      value               = tag.value
      propagate_at_launch = true 
    } 
  }
}

The preceding pseudocode won’t work, but a for_each expression will.
The syntax for using for_each to dynamically generate inline blocks
looks like this:

dynamic "<VAR_NAME>" {
  for_each = <COLLECTION> 
 
  content { 



    [CONFIG...] 
  }
}

where VAR_NAME is the name to use for the variable that will store the
value of each “iteration,” COLLECTION is a list or map to iterate over, and
the content block is what to generate from each iteration. You can use
<VAR_NAME>.key and <VAR_NAME>.value within the content
block to access the key and value, respectively, of the current item in the
COLLECTION. Note that when you’re using for_each with a list, the
key will be the index, and the value will be the item in the list at that
index, and when using for_each with a map, the key and value will be
one of the key-value pairs in the map.

Putting this all together, here is how you can dynamically generate tag
blocks using for_each in the aws_autoscaling_group resource:

resource "aws_autoscaling_group" "example" {
  launch_configuration = aws_launch_configuration.example.name
  vpc_zone_identifier  = data.aws_subnets.default.ids
  target_group_arns    = [aws_lb_target_group.asg.arn]
  health_check_type    = "ELB" 
 
  min_size = var.min_size
  max_size = var.max_size 
 
  tag {
    key                 = "Name"
    value               = var.cluster_name
    propagate_at_launch = true 
  } 
 
  dynamic "tag" {
    for_each = var.custom_tags 
 
    content {
      key                 = tag.key
      value               = tag.value
      propagate_at_launch = true 
    } 
  }
}



If you run terraform plan now, you should see a plan that looks
something like this:

$ terraform plan 
 
Terraform will perform the following actions: 
 
  # aws_autoscaling_group.example will be updated in-place 
  ~ resource "aws_autoscaling_group" "example" { 
        (...) 
 
        tag { 
            key                 = "Name" 
            propagate_at_launch = true 
            value               = "webservers-prod" 
        } 
      + tag { 
          + key                 = "Owner" 
          + propagate_at_launch = true 
          + value               = "team-foo" 
        } 
      + tag { 
          + key                 = "ManagedBy" 
          + propagate_at_launch = true 
          + value               = "terraform" 
        } 
    } 
 
Plan: 0 to add, 1 to change, 0 to destroy.



ENFORCING TAGGING STANDARDS
It’s typically a good idea to come up with a tagging standard for your
team and create Terraform modules that enforce this standard as code.
One way to do this is to manually ensure that every resource in every
module sets the proper tags, but with many resources, this is tedious
and error prone. If there are tags that you want to apply to all of your
AWS resources, a more reliable approach is to add the
default_tags block to the aws provider in every one of your
modules:

provider "aws" {
  region = "us-east-2" 
 
  # Tags to apply to all AWS resources by default 
  default_tags {
    tags = {
      Owner     = "team-foo"
      ManagedBy = "Terraform" 
    } 
  }
}

The preceding code will ensure that every single AWS resource you
create in this module will include the Owner and ManagedBy tags
(the only exceptions are resources that don’t support tags and the
aws_autoscaling_group resource, which does support tags but
doesn’t work with default_tags, which is why you had to do all
that work in the previous section to set tags in the webserver-
cluster module). default_tags gives you a way to ensure all
resources have a common baseline of tags while still allowing you to
override those tags on a resource-by-resource basis. In Chapter 9, you’ll
see how to define and enforce policies as code such as “all resources
must have a ManagedBy tag” using tools such as OPA.

Loops with for Expressions



You’ve now seen how to use loops to create multiple copies of entire
resources and inline blocks, but what if you need a loop to set a single
variable or parameter?

Imagine that you wrote some Terraform code that took in a list of names:

variable "names" {
  description = "A list of names"
  type        = list(string)
  default     = ["neo", "trinity", "morpheus"]
}

How could you convert all of these names to uppercase? In a general-
purpose programming language such as Python, you could write the
following for-loop:

names = ["neo", "trinity", "morpheus"] 
 
upper_case_names = []
for name in names: 
    upper_case_names.append(name.upper()) 
 
print upper_case_names 
 
# Prints out: ['NEO', 'TRINITY', 'MORPHEUS']

Python offers another way to write the exact same code in one line using a
syntax known as a list comprehension:

names = ["neo", "trinity", "morpheus"]
upper_case_names = [name.upper() for name in names]
print upper_case_names 
 
# Prints out: ['NEO', 'TRINITY', 'MORPHEUS']

Python also allows you to filter the resulting list by specifying a condition:

names = ["neo", "trinity", "morpheus"]
short_upper_case_names = [name.upper() for name in names if 
len(name) < 5]
print short_upper_case_names 



 
# Prints out: ['NEO']

Terraform offers similar functionality in the form of a for expression (not to
be confused with the for_each expression you saw in the previous
section). The basic syntax of a for expression is as follows:

[for <ITEM> in <LIST> : <OUTPUT>]

where LIST is a list to loop over, ITEM is the local variable name to assign
to each item in LIST, and OUTPUT is an expression that transforms ITEM
in some way. For example, here is the Terraform code to convert the list of
names in var.names to uppercase:

output "upper_names" {
  value = [for name in var.names : upper(name)]
}

If you run terraform apply on this code, you get the following output:

$ terraform apply 
 
Apply complete! Resources: 0 added, 0 changed, 0 destroyed. 
 
Outputs: 
 
upper_names = [ 
  "NEO", 
  "TRINITY", 
  "MORPHEUS", 
]

Just as with Python’s list comprehensions, you can filter the resulting list by
specifying a condition:

output "short_upper_names" {
  value = [for name in var.names : upper(name) if length(name) < 
5]
}



Running terraform apply on this code gives you this:

short_upper_names = [ 
  "NEO", 
]

Terraform’s for expression also allows you to loop over a map using the
following syntax:

[for <KEY>, <VALUE> in <MAP> : <OUTPUT>]

Here, MAP is a map to loop over, KEY and VALUE are the local variable
names to assign to each key-value pair in MAP, and OUTPUT is an
expression that transforms KEY and VALUE in some way. Here’s an
example:

variable "hero_thousand_faces" {
  description = "map"
  type        = map(string)
  default     = {
    neo      = "hero"
    trinity  = "love interest"
    morpheus = "mentor" 
  }
} 
 
output "bios" {
  value = [for name, role in var.hero_thousand_faces : "${name} 
is the ${role}"]
}

When you run terraform apply on this code, you get the following:

bios = [ 
  "morpheus is the mentor", 
  "neo is the hero", 
  "trinity is the love interest", 
]



You can also use for expressions to output a map rather than a list using
the following syntax:

# Loop over a list and output a map
{for <ITEM> in <LIST> : <OUTPUT_KEY> => <OUTPUT_VALUE>} 
 
# Loop over a map and output a map
{for <KEY>, <VALUE> in <MAP> : <OUTPUT_KEY> => <OUTPUT_VALUE>}

The only differences are that (a) you wrap the expression in curly braces
rather than square brackets, and (b) rather than outputting a single value
each iteration, you output a key and value, separated by an arrow. For
example, here is how you can transform a map to make all the keys and
values uppercase:

output "upper_roles" {
  value = {for name, role in var.hero_thousand_faces : 
upper(name) => upper(role)}
}

Here’s the output from running this code:

upper_roles = { 
  "MORPHEUS" = "MENTOR" 
  "NEO" = "HERO" 
  "TRINITY" = "LOVE INTEREST" 
}

Loops with the for String Directive
Earlier in the book, you learned about string interpolations, which allow
you to reference Terraform code within strings:

"Hello, ${var.name}"

String directives allow you to use control statements (e.g., for-loops and if-
statements) within strings using a syntax similar to string interpolations, but



instead of a dollar sign and curly braces (${…}), you use a percent sign and
curly braces (%{…}).

Terraform supports two types of string directives: for-loops and
conditionals. In this section, we’ll go over for-loops; we’ll come back to
conditionals later in the chapter. The for string directive uses the following
syntax:

%{ for <ITEM> in <COLLECTION> }<BODY>%{ endfor }

where COLLECTION is a list or map to loop over, ITEM is the local
variable name to assign to each item in COLLECTION, and BODY is what
to render each iteration (which can reference ITEM). Here’s an example:

variable "names" {
  description = "Names to render"
  type        = list(string)
  default     = ["neo", "trinity", "morpheus"]
} 
 
output "for_directive" {
  value = "%{ for name in var.names }${name}, %{ endfor }"
}

When you run terraform apply, you get the following output:

$ terraform apply 
 
(...) 
 
Outputs: 
 
for_directive = "neo, trinity, morpheus, "

There’s also a version of the for string directive syntax that gives you the
index in the for-loop:

%{ for <INDEX>, <ITEM> in <COLLECTION> }<BODY>%{ endfor }



Here’s an example using the index:

output "for_directive_index" {
  value = "%{ for i, name in var.names }(${i}) ${name}, %{ endfor 
}"
}

When you run terraform apply, you get the following output:

$ terraform apply 
 
(...) 
 
Outputs: 
 
for_directive_index = "(0) neo, (1) trinity, (2) morpheus, "

Note how in both outputs there is an extra trailing comma and space. You
can fix this using conditionals—specifically, the if string directive—as
described in the next section.

Conditionals
Just as Terraform offers several different ways to do loops, there are also
several different ways to do conditionals, each intended to be used in a
slightly different scenario:

count parameter

Used for conditional resources

for_each and for expressions

Used for conditional resources and inline blocks within a resource

if string directive

Used for conditionals within a string



Let’s go through these, one at a time.

Conditionals with the count Parameter
The count parameter you saw earlier lets you do a basic loop. If you’re
clever, you can use the same mechanism to do a basic conditional. Let’s
begin by looking at if-statements in the next section and then move on to if-
else-statements in the section thereafter.

If-statements with the count parameter
In Chapter 4, you created a Terraform module that could be used as a
“blueprint” for deploying web server clusters. The module created an Auto
Scaling Group (ASG), Application Load Balancer (ALB), security groups,
and a number of other resources. One thing the module did not create was
the scheduled action. Because you want to scale the cluster out only in
production, you defined the aws_autoscaling_schedule resources
directly in the production configurations under
live/prod/services/webserver-cluster/main.tf. Is there a way you could
define the aws_autoscaling_schedule resources in the
webserver-cluster module and conditionally create them for some
users of the module and not create them for others?

Let’s give it a shot. The first step is to add a Boolean input variable in
modules/services/webserver-cluster/variables.tf that you can use to specify
whether the module should enable auto scaling:

variable "enable_autoscaling" {
  description = "If set to true, enable auto scaling"
  type        = bool
}

Now, if you had a general-purpose programming language, you could use
this input variable in an if-statement:

# This is just pseudo code. It won't actually work in Terraform.
if var.enable_autoscaling { 
  resource "aws_autoscaling_schedule" 



"scale_out_during_business_hours" {
    scheduled_action_name  = "${var.cluster_name}-scale-out-
during-business-hours"
    min_size               = 2
    max_size               = 10
    desired_capacity       = 10
    recurrence             = "0 9 * * *"
    autoscaling_group_name = aws_autoscaling_group.example.name 
  } 
 
  resource "aws_autoscaling_schedule" "scale_in_at_night" {
    scheduled_action_name  = "${var.cluster_name}-scale-in-at-
night"
    min_size               = 2
    max_size               = 10
    desired_capacity       = 2
    recurrence             = "0 17 * * *"
    autoscaling_group_name = aws_autoscaling_group.example.name 
  }
}

Terraform doesn’t support if-statements, so this code won’t work. However,
you can accomplish the same thing by using the count parameter and
taking advantage of two properties:

If you set count to 1 on a resource, you get one copy of that resource;
if you set count to 0, that resource is not created at all.

Terraform supports conditional expressions of the format
<CONDITION> ? <TRUE_VAL> : <FALSE_VAL>. This ternary
syntax, which may be familiar to you from other programming
languages, will evaluate the Boolean logic in CONDITION, and if the
result is true, it will return TRUE_VAL, and if the result is false,
it’ll return FALSE_VAL.

Putting these two ideas together, you can update the webserver-
cluster module as follows:

resource "aws_autoscaling_schedule" 
"scale_out_during_business_hours" {
  count = var.enable_autoscaling ? 1 : 0 
 



  scheduled_action_name  = "${var.cluster_name}-scale-out-during-
business-hours"
  min_size               = 2
  max_size               = 10
  desired_capacity       = 10
  recurrence             = "0 9 * * *"
  autoscaling_group_name = aws_autoscaling_group.example.name
} 
 
resource "aws_autoscaling_schedule" "scale_in_at_night" {
  count = var.enable_autoscaling ? 1 : 0 
 
  scheduled_action_name  = "${var.cluster_name}-scale-in-at-
night"
  min_size               = 2
  max_size               = 10
  desired_capacity       = 2
  recurrence             = "0 17 * * *"
  autoscaling_group_name = aws_autoscaling_group.example.name
}

If var.enable_autoscaling is true, the count parameter for each
of the aws_autoscaling_schedule resources will be set to 1, so one
of each will be created. If var.enable_autoscaling is false, the
count parameter for each of the aws_autoscaling_schedule
resources will be set to 0, so neither one will be created. This is exactly the
conditional logic you want!

You can now update the usage of this module in staging (in
live/stage/services/webserver-cluster/main.tf) to disable auto scaling by
setting enable_autoscaling to false:

module "webserver_cluster" {
  source = "../../../../modules/services/webserver-cluster" 
 
  cluster_name           = "webservers-stage"
  db_remote_state_bucket = "(YOUR_BUCKET_NAME)"
  db_remote_state_key    = "stage/data-
stores/mysql/terraform.tfstate" 
 
  instance_type        = "t2.micro"
  min_size             = 2
  max_size             = 2



  enable_autoscaling   = false
}

Similarly, you can update the usage of this module in production (in
live/prod/services/webserver-cluster/main.tf) to enable auto scaling by
setting enable_autoscaling to true (make sure to also remove the
custom aws_autoscaling_schedule resources that were in the
production environment from Chapter 4):

module "webserver_cluster" {
  source = "../../../../modules/services/webserver-cluster" 
 
  cluster_name           = "webservers-prod"
  db_remote_state_bucket = "(YOUR_BUCKET_NAME)"
  db_remote_state_key    = "prod/data-
stores/mysql/terraform.tfstate" 
 
  instance_type        = "m4.large"
  min_size             = 2
  max_size             = 10
  enable_autoscaling   = true 
 
  custom_tags = {
    Owner     = "team-foo"
    ManagedBy = "terraform" 
  }
}

If-else-statements with the count parameter
Now that you know how to do an if-statement, what about an if-else-
statement?

Earlier in this chapter, you created several IAM users with read-only access
to EC2. Imagine that you wanted to give one of these users, neo, access to
CloudWatch as well but allow the person applying the Terraform
configurations to decide whether neo is assigned only read access or both
read and write access. This is a slightly contrived example, but a useful one
to demonstrate a simple type of if-else-statement.

Here is an IAM Policy that allows read-only access to CloudWatch:



resource "aws_iam_policy" "cloudwatch_read_only" {
  name   = "cloudwatch-read-only"
  policy = data.aws_iam_policy_document.cloudwatch_read_only.json
} 
 
data "aws_iam_policy_document" "cloudwatch_read_only" { 
  statement {
    effect    = "Allow"
    actions   = [ 
      "cloudwatch:Describe*", 
      "cloudwatch:Get*", 
      "cloudwatch:List*" 
    ]
    resources = ["*"] 
  }
}

And here is an IAM Policy that allows full (read and write) access to
CloudWatch:

resource "aws_iam_policy" "cloudwatch_full_access" {
  name   = "cloudwatch-full-access"
  policy = 
data.aws_iam_policy_document.cloudwatch_full_access.json
} 
 
data "aws_iam_policy_document" "cloudwatch_full_access" { 
  statement {
    effect    = "Allow"
    actions   = ["cloudwatch:*"]
    resources = ["*"] 
  }
}

The goal is to attach one of these IAM Policies to "neo", based on the
value of a new input variable called
give_neo_cloudwatch_full_access:

variable "give_neo_cloudwatch_full_access" {
  description = "If true, neo gets full access to CloudWatch"
  type        = bool
}



If you were using a general-purpose programming language, you might
write an if-else-statement that looks like this:

# This is just pseudo code. It won't actually work in Terraform.
if var.give_neo_cloudwatch_full_access { 
  resource "aws_iam_user_policy_attachment" 
"neo_cloudwatch_full_access" {
    user       = aws_iam_user.example[0].name
    policy_arn = aws_iam_policy.cloudwatch_full_access.arn 
  }
} else { 
  resource "aws_iam_user_policy_attachment" 
"neo_cloudwatch_read_only" {
    user       = aws_iam_user.example[0].name
    policy_arn = aws_iam_policy.cloudwatch_read_only.arn 
  }
}

To do this in Terraform, you can use the count parameter and a
conditional expression on each of the resources:

resource "aws_iam_user_policy_attachment" 
"neo_cloudwatch_full_access" {
  count = var.give_neo_cloudwatch_full_access ? 1 : 0 
 
  user       = aws_iam_user.example[0].name
  policy_arn = aws_iam_policy.cloudwatch_full_access.arn
} 
 
resource "aws_iam_user_policy_attachment" 
"neo_cloudwatch_read_only" {
  count = var.give_neo_cloudwatch_full_access ? 0 : 1 
 
  user       = aws_iam_user.example[0].name
  policy_arn = aws_iam_policy.cloudwatch_read_only.arn
}

This code contains two aws_iam_user_policy_attachment
resources. The first one, which attaches the CloudWatch full access
permissions, has a conditional expression that will evaluate to 1 if
var.give_neo_cloudwatch_full_access is true, and 0
otherwise (this is the if-clause). The second one, which attaches the



CloudWatch read-only permissions, has a conditional expression that does
the exact opposite, evaluating to 0 if
var.give_neo_cloudwatch_full_access is true, and 1
otherwise (this is the else-clause). And there you are—you now know how
to do if-else-statements!

Now that you have the ability to create one resource or the other based on
an if/else condition, what do you do if you need to access an attribute on the
resource that actually got created? For example, what if you wanted to add
an output variable called neo_cloudwatch_policy_arn, which
contains the ARN of the policy you actually attached?

The simplest option is to use ternary syntax:

output "neo_cloudwatch_policy_arn" {
  value = ( 
    var.give_neo_cloudwatch_full_access 
    ? 
aws_iam_user_policy_attachment.neo_cloudwatch_full_access[0].poli
cy_arn 
    : 
aws_iam_user_policy_attachment.neo_cloudwatch_read_only[0].policy
_arn 
  )
}

This will work fine for now, but this code is a bit brittle: if you ever change
the conditional in the count parameter of the
aws_iam_user_policy_attachment resources—perhaps in the
future, it’ll depend on multiple variables and not solely on
var.give_neo_cloudwatch_full_access—there’s a risk that
you’ll forget to update the conditional in this output variable, and as a
result, you’ll get a very confusing error when trying to access an array
element that might not exist.

A safer approach is to take advantage of the concat and one functions.
The concat function takes two or more lists as inputs and combines them
into a single list. The one function takes a list as input and if the list has 0
elements, it returns null; if the list has 1 element, it returns that element;



and if the list has more than 1 element, it shows an error. Putting these two
together, and combining them with a splat expression, you get the
following:

output "neo_cloudwatch_policy_arn" {
  value = one(concat( 
    
aws_iam_user_policy_attachment.neo_cloudwatch_full_access[*].poli
cy_arn, 
    
aws_iam_user_policy_attachment.neo_cloudwatch_read_only[*].policy
_arn 
  ))
}

Depending on the outcome of the if/else conditional, either
neo_cloudwatch_full_access will be empty and
neo_cloudwatch_read_only will contain one element or vice versa,
so once you concatenate them together, you’ll have a list with one element,
and the one function will return that element. This will continue to work
correctly no matter how you change your if/else conditional.

Using count and built-in functions to simulate if-else-statements is a bit of
a hack, but it’s one that works fairly well, and as you can see from the code,
it allows you to conceal lots of complexity from your users so that they get
to work with a clean and simple API.

Conditionals with for_each and for Expressions
Now that you understand how to do conditional logic with resources using
the count parameter, you can probably guess that you can use a similar
strategy to do conditional logic by using a for_each expression.

If you pass a for_each expression an empty collection, the result will be
zero copies of the resource, inline block, or module where you have the
for_each; if you pass it a nonempty collection, it will create one or more
copies of the resource, inline block, or module. The only question is, how
do you conditionally decide if the collection should be empty or not?



The answer is to combine the for_each expression with the for
expression. For example, recall the way the webserver-cluster
module in modules/services/webserver-cluster/main.tf sets tags:

  dynamic "tag" {
    for_each = var.custom_tags 
 
    content {
      key                 = tag.key
      value               = tag.value
      propagate_at_launch = true 
    } 
  }

If var.custom_tags is empty, the for_each expression will have
nothing to loop over, so no tags will be set. In other words, you already
have some conditional logic here. But you can go even further, by
combining the for_each expression with a for expression as follows:

  dynamic "tag" {
    for_each = { 
      for key, value in var.custom_tags:
      key => upper(value)
      if key != "Name" 
    } 
 
    content {
      key                 = tag.key
      value               = tag.value
      propagate_at_launch = true 
    } 
  }

The nested for expression loops over var.custom_tags, converts
each value to uppercase (perhaps for consistency), and uses a conditional in
the for expression to filter out any key set to Name because the module
already sets its own Name tag. By filtering values in the for expression,
you can implement arbitrary conditional logic.



Note that even though you should almost always prefer for_each over
count for creating multiple copies of a resource or module, when it comes
to conditional logic, setting count to 0 or 1 tends to be simpler than setting
for_each to an empty or nonempty collection. Therefore, I typically
recommend using count to conditionally create resources and modules,
and using for_each for all other types of loops and conditionals.

Conditionals with the if String Directive
Let’s now look at the if string directive, which has the following syntax:

%{ if <CONDITION> }<TRUEVAL>%{ endif }

where CONDITION is any expression that evaluates to a boolean and
TRUEVAL is the expression to render if CONDITION evaluates to true.

Earlier in the chapter, you used the for string directive to do loops within a
string to output several comma-separated names. The problem was that
there was an extra trailing comma and space at the end of the string. You
can use the if string directive to fix this issue as follows:

output "for_directive_index_if" {
  value = <<EOF
%{ for i, name in var.names } 
  ${name}%{ if i < length(var.names) - 1 }, %{ endif }
%{ endfor }
EOF
}

There are a few changes here from the original version:

I put the code in a HEREDOC, which is a way to define multiline
strings. This allows me to spread the code out across several lines so it
is more readable.

I used the if string directive to not output the comma and space for
the last item in the list.



When you run terraform apply, you get the following output:

$ terraform apply 
 
(...) 
 
Outputs: 
 
for_directive_index_if = <<EOT 
 
  neo, 
 
  trinity, 
 
  morpheus 
 
 
EOT

Whoops. The trailing comma is gone, but we’ve introduced a bunch of
extra whitespace (spaces and newlines). Every whitespace you put in a
HEREDOC ends up in the final string. You can fix this by adding strip
markers (~) to your string directives, which will eat up the extra whitespace
before or after the strip marker:

output "for_directive_index_if_strip" {
  value = <<EOF
%{~ for i, name in var.names ~}
${name}%{ if i < length(var.names) - 1 }, %{ endif }
%{~ endfor ~}
EOF
}

Let’s give this version a try:

$ terraform apply 
 
(...) 
 
Outputs: 
 
for_directive_index_if_strip = "neo, trinity, morpheus"



OK, that’s a nice improvement: no extra whitespace or commas. You can
make this output even prettier by adding an else to the string directive,
which uses the following syntax:

%{ if <CONDITION> }<TRUEVAL>%{ else }<FALSEVAL>%{ endif }

where FALSEVAL is the expression to render if CONDITION evaluates to
false. Here’s an example of how to use the else clause to add a period at
the end:

output "for_directive_index_if_else_strip" {
  value = <<EOF
%{~ for i, name in var.names ~}
${name}%{ if i < length(var.names) - 1 }, %{ else }.%{ endif }
%{~ endfor ~}
EOF
}

When you run terraform apply, you get the following output:

$ terraform apply 
 
(...) 
 
Outputs: 
 
for_directive_index_if_else_strip = "neo, trinity, morpheus."

Zero-Downtime Deployment
Now that your module has a clean and simple API for deploying a web
server cluster, an important question to ask is, how do you update that
cluster? That is, when you make changes to your code, how do you deploy
a new Amazon Machine Image (AMI) across the cluster? And how do you
do it without causing downtime for your users?

The first step is to expose the AMI as an input variable in
modules/services/webserver-cluster/variables.tf. In real-world examples,



this is all you would need because the actual web server code would be
defined in the AMI. However, in the simplified examples in this book, all of
the web server code is actually in the User Data script, and the AMI is just a
vanilla Ubuntu image. Switching to a different version of Ubuntu won’t
make for much of a demonstration, so in addition to the new AMI input
variable, you can also add an input variable to control the text the User Data
script returns from its one-liner HTTP server:

variable "ami" {
  description = "The AMI to run in the cluster"
  type        = string
  default     = "ami-0fb653ca2d3203ac1"
} 
 
variable "server_text" {
  description = "The text the web server should return"
  type        = string
  default     = "Hello, World"
}

Now you need to update the modules/services/webserver-cluster/user-
data.sh Bash script to use this server_text variable in the <h1> tag it
returns:

#!/bin/bash 
 
cat > index.xhtml <<EOF
<h1>${server_text}</h1>
<p>DB address: ${db_address}</p>
<p>DB port: ${db_port}</p>
EOF 
 
nohup busybox httpd -f -p ${server_port} &

Finally, find the launch configuration in modules/services/webserver-
cluster/main.tf, update the image_id parameter to use var.ami, and
update the templatefile call in the user_data parameter to pass in
var.server_text:



resource "aws_launch_configuration" "example" {
  image_id        = var.ami
  instance_type   = var.instance_type
  security_groups = [aws_security_group.instance.id] 
 
  user_data       = templatefile("${path.module}/user-data.sh", {
    server_port = var.server_port
    db_address  = data.terraform_remote_state.db.outputs.address
    db_port     = data.terraform_remote_state.db.outputs.port
    server_text = var.server_text 
  }) 
 
  # Required when using a launch configuration with an auto 
scaling group. 
  lifecycle {
    create_before_destroy = true 
  }
}

Now, in the staging environment, in live/stage/services/webserver-
cluster/main.tf, you can set the new ami and server_text parameters:

module "webserver_cluster" {
  source = "../../../../modules/services/webserver-cluster" 
 
  ami         = "ami-0fb653ca2d3203ac1"
  server_text = "New server text" 
 
  cluster_name           = "webservers-stage"
  db_remote_state_bucket = "(YOUR_BUCKET_NAME)"
  db_remote_state_key    = "stage/data-
stores/mysql/terraform.tfstate" 
 
  instance_type      = "t2.micro"
  min_size           = 2
  max_size           = 2
  enable_autoscaling = false
}

This code uses the same Ubuntu AMI, but changes the server_text to a
new value. If you run the plan command, you should see something like
the following:



Terraform will perform the following actions: 
 
  # module.webserver_cluster.aws_autoscaling_group.ex will be 
updated in-place 
  ~ resource "aws_autoscaling_group" "example" { 
        id                        = "webservers-stage-terraform-
20190516" 
      ~ launch_configuration      = "terraform-20190516" -> 
(known after apply) 
        (...) 
    } 
 
  # module.webserver_cluster.aws_launch_configuration.ex must be 
replaced 
+/- resource "aws_launch_configuration" "example" { 
      ~ id                          = "terraform-20190516" -> 
(known after apply) 
        image_id                    = "ami-0fb653ca2d3203ac1" 
        instance_type               = "t2.micro" 
      ~ name                        = "terraform-20190516" -> 
(known after apply) 
      ~ user_data                   = "bd7c0a6" -> "4919a13" # 
forces replacement 
        (...) 
    } 
 
Plan: 1 to add, 1 to change, 1 to destroy.

As you can see, Terraform wants to make two changes: first, replace the old
launch configuration with a new one that has the updated user_data; and
second, modify the Auto Scaling Group in place to reference the new
launch configuration. There is a problem here: merely referencing the new
launch configuration will have no effect until the ASG launches new EC2
Instances. So how do you instruct the ASG to deploy new Instances?

One option is to destroy the ASG (e.g., by running terraform
destroy) and then re-create it (e.g., by running terraform apply).
The problem is that after you delete the old ASG, your users will
experience downtime until the new ASG comes up. What you want to do
instead is a zero-downtime deployment. The way to accomplish that is to
create the replacement ASG first and then destroy the original one. As it



turns out, the create_before_destroy lifecycle setting you first saw
in Chapter 2 does exactly this.

Here’s how you can take advantage of this lifecycle setting to get a zero-
downtime deployment:

1. Configure the name parameter of the ASG to depend directly on the
name of the launch configuration. Each time the launch configuration
changes (which it will when you update the AMI or User Data), its
name changes, and therefore the ASG’s name will change, which
forces Terraform to replace the ASG.

2. Set the create_before_destroy parameter of the ASG to true
so that each time Terraform tries to replace it, it will create the
replacement ASG before destroying the original.

3. Set the min_elb_capacity parameter of the ASG to the
min_size of the cluster so that Terraform will wait for at least that
many servers from the new ASG to pass health checks in the ALB
before it will begin destroying the original ASG.

Here is what the updated aws_autoscaling_group resource should
look like in modules/services/webserver-cluster/main.tf:

resource "aws_autoscaling_group" "example" {
  # Explicitly depend on the launch configuration's name so each 
time it's
  # replaced, this ASG is also replaced
  name = 
"${var.cluster_name}-${aws_launch_configuration.example.name}" 
 
  launch_configuration = aws_launch_configuration.example.name
  vpc_zone_identifier  = data.aws_subnets.default.ids
  target_group_arns    = [aws_lb_target_group.asg.arn]
  health_check_type    = "ELB" 
 
  min_size = var.min_size
  max_size = var.max_size 
 
  # Wait for at least this many instances to pass health checks 
before

1



  # considering the ASG deployment complete
  min_elb_capacity = var.min_size 
 
  # When replacing this ASG, create the replacement first, and 
only delete the
  # original after 
  lifecycle {
    create_before_destroy = true 
  } 
 
  tag {
    key                 = "Name"
    value               = var.cluster_name
    propagate_at_launch = true 
  } 
 
  dynamic "tag" {
    for_each = { 
      for key, value in var.custom_tags:
      key => upper(value)
      if key != "Name" 
    } 
 
    content {
      key                 = tag.key
      value               = tag.value
      propagate_at_launch = true 
    } 
  }
}

If you rerun the plan command, you’ll now see something that looks like
the following:

Terraform will perform the following actions: 
 
  # module.webserver_cluster.aws_autoscaling_group.example must 
be replaced 
+/- resource "aws_autoscaling_group" "example" { 
      ~ id     = "example-2019" -> (known after apply) 
      ~ name   = "example-2019" -> (known after apply) # forces 
replacement 
        (...) 
    } 
 
  # module.webserver_cluster.aws_launch_configuration.example 



must be replaced 
+/- resource "aws_launch_configuration" "example" { 
      ~ id              = "terraform-2019" -> (known after apply) 
        image_id        = "ami-0fb653ca2d3203ac1" 
        instance_type   = "t2.micro" 
      ~ name            = "terraform-2019" -> (known after apply) 
      ~ user_data       = "bd7c0a" -> "4919a" # forces 
replacement 
        (...) 
    } 
 
    (...) 
 
Plan: 2 to add, 2 to change, 2 to destroy.

The key thing to notice is that the aws_autoscaling_group resource
now says forces replacement next to its name parameter, which
means that Terraform will replace it with a new ASG running your new
AMI or User Data. Run the apply command to kick off the deployment,
and while it runs, consider how the process works.

You start with your original ASG running, say, v1 of your code (Figure 5-
1).





Figure 5-1. Initially, you have the original ASG running v1 of your code.

You make an update to some aspect of the launch configuration, such as
switching to an AMI that contains v2 of your code, and run the apply
command. This forces Terraform to begin deploying a new ASG with v2 of
your code (Figure 5-2).





Figure 5-2. Terraform begins deploying the new ASG with v2 of your code.

After a minute or two, the servers in the new ASG have booted, connected
to the database, registered in the ALB, and started to pass health checks. At
this point, both the v1 and v2 versions of your app will be running
simultaneously; and which one users see depends on where the ALB
happens to route them (Figure 5-3).





Figure 5-3. The servers in the new ASG boot up, connect to the DB, register in the ALB, and begin
serving traffic.

After min_elb_capacity servers from the v2 ASG cluster have
registered in the ALB, Terraform will begin to undeploy the old ASG, first
by deregistering the servers in that ASG from the ALB, and then by
shutting them down (Figure 5-4).





Figure 5-4. The servers in the old ASG begin to shut down.

After a minute or two, the old ASG will be gone, and you will be left with
just v2 of your app running in the new ASG (Figure 5-5).





Figure 5-5. Now, only the new ASG remains, which is running v2 of your code.

During this entire process, there are always servers running and handling
requests from the ALB, so there is no downtime. Open the ALB URL in
your browser, and you should see something like Figure 5-6.

Figure 5-6. The new code is now deployed.

Success! The new server text has deployed. As a fun experiment, make
another change to the server_text parameter—for example, update it to
say “foo bar”—and run the apply command. In a separate terminal tab, if
you’re on Linux/Unix/macOS, you can use a Bash one-liner to run curl in
a loop, hitting your ALB once per second and allowing you to see the zero-
downtime deployment in action:

$ while true; do curl http://<load_balancer_url>; sleep 1; done

For the first minute or so, you should see the same response: New server
text. Then, you’ll begin seeing it alternate between New server text
and foo bar. This means the new Instances have registered in the ALB
and passed health checks. After another minute, the New server text
message will disappear, and you’ll see only foo bar, which means the



old ASG has been shut down. The output will look something like this (for
clarity, I’m listing only the contents of the <h1> tags):

New server text 
New server text 
New server text 
New server text 
New server text 
New server text 
foo bar 
New server text 
foo bar 
New server text 
foo bar 
New server text 
foo bar 
New server text 
foo bar 
New server text 
foo bar 
foo bar 
foo bar 
foo bar 
foo bar 
foo bar

As an added bonus, if something went wrong during the deployment,
Terraform will automatically roll back. For example, if there were a bug in
v2 of your app and it failed to boot, the Instances in the new ASG will not
register with the ALB. Terraform will wait up to
wait_for_capacity_timeout (default is 10 minutes) for
min_elb_capacity servers of the v2 ASG to register in the ALB, after
which it considers the deployment a failure, deletes the v2 ASG, and exits
with an error (meanwhile, v1 of your app continues to run just fine in the
original ASG).

Terraform Gotchas
After going through all these tips and tricks, it’s worth taking a step back
and pointing out a few gotchas, including those related to the loop, if-



statement, and deployment techniques, as well as those related to more
general problems that affect Terraform as a whole:

count and for_each have limitations.

Zero-downtime deployment has limitations.

Valid plans can fail.

Refactoring can be tricky.

count and for_each Have Limitations
In the examples in this chapter, you made extensive use of the count
parameter and for_each expressions in loops and if-statements. This
works well, but there’s an important limitation that you need to be aware of:
you cannot reference any resource outputs in count or for_each.

Imagine that you want to deploy multiple EC2 Instances, and for some
reason you didn’t want to use an ASG. The code might look like this:

resource "aws_instance" "example_1" {
  count         = 3
  ami           = "ami-0fb653ca2d3203ac1"
  instance_type = "t2.micro"
}

Because count is being set to a hardcoded value, this code will work
without issues, and when you run apply, it will create three EC2
Instances. Now, what if you want to deploy one EC2 Instance per
Availability Zone (AZ) in the current AWS region? You could update your
code to fetch the list of AZs using the aws_availability_zones data
source and use the count parameter and array lookups to “loop” over each
AZ and create an EC2 Instance in it:

resource "aws_instance" "example_2" {
  count             = 
length(data.aws_availability_zones.all.names)
  availability_zone = 



data.aws_availability_zones.all.names[count.index]
  ami               = "ami-0fb653ca2d3203ac1"
  instance_type     = "t2.micro"
} 
 
data "aws_availability_zones" "all" {}

Again, this code works just fine, since count can reference data sources
without problems. However, what happens if the number of instances you
need to create depends on the output of some resource? The easiest way to
experiment with this is to use the random_integer resource, which, as
you can probably guess from the name, returns a random integer:

resource "random_integer" "num_instances" {
  min = 1
  max = 3
}

This code generates a random integer between 1 and 3. Let’s see what
happens if you try to use the result output from this resource in the
count parameter of your aws_instance resource:

resource "aws_instance" "example_3" {
  count         = random_integer.num_instances.result
  ami           = "ami-0fb653ca2d3203ac1"
  instance_type = "t2.micro"
}

If you run terraform plan on this code, you’ll get the following error:

Error: Invalid count argument 
 
  on main.tf line 30, in resource "aws_instance" "example_3": 
  30:   count         = random_integer.num_instances.result 
 
The "count" value depends on resource attributes that cannot be 
determined 
until apply, so Terraform cannot predict how many instances will 
be created. 
To work around this, use the -target argument to first apply only 



the 
resources that the count depends on.

Terraform requires that it can compute count and for_each during the
plan phase, before any resources are created or modified. This means that
count and for_each can reference hardcoded values, variables, data
sources, and even lists of resources (so long as the length of the list can be
determined during plan), but not computed resource outputs.

Zero-Downtime Deployment Has Limitations
There are a couple of gotchas with using create_before_destroy
with an ASG to do zero-downtime deployment.

The first issue is that it doesn’t work with auto scaling policies. Or, to be
more accurate, it resets your ASG size back to its min_size after each
deployment, which can be a problem if you had used auto scaling policies
to increase the number of running servers. For example, the webserver-
cluster module includes a couple of aws_autoscaling_schedule
resources that increase the number of servers in the cluster from 2 to 10 at 9
a.m. If you ran a deployment at, say, 11 a.m., the replacement ASG would
boot up with only 2 servers, rather than 10, and it would stay that way until
9 a.m. the next day. There are several possible workarounds, such as
tweaking the recurrence parameter on the
aws_autoscaling_schedule or setting the desired_capacity
parameter of the ASG to get its value from a custom script that uses the
AWS API to figure out how many instances were running before
deployment.

However, the second, and bigger, issue is that, for important and
complicated tasks like a zero-downtime deployment, you really want to use
native, first-class solutions, and not workarounds that require you to
haphazardly glue together create_before_destroy,
min_elb_capacity, custom scripts, etc. As it turns out, for Auto
Scaling Groups, AWS now offers a native solution called instance refresh.



Go back to your aws_autoscaling_group resource and undo the
zero-downtime deployment changes:

Set name back to var.cluster_name, instead of having it depend
on the aws_launch_configuration name.

Remove the create_before_destroy and
min_elb_capacity settings.

And now, update the aws_autoscaling_group resource to instead use
an instance_refresh block as follows:

resource "aws_autoscaling_group" "example" {
  name                 = var.cluster_name
  launch_configuration = aws_launch_configuration.example.name
  vpc_zone_identifier  = data.aws_subnets.default.ids
  target_group_arns    = [aws_lb_target_group.asg.arn]
  health_check_type    = "ELB" 
 
  min_size = var.min_size
  max_size = var.max_size 
 
  # Use instance refresh to roll out changes to the ASG 
  instance_refresh {
    strategy = "Rolling" 
    preferences {
      min_healthy_percentage = 50 
    } 
  }
}

If you deploy this ASG, and then later change some parameter (e.g., change
server_text) and run plan, the diff will be back to just updating the
aws_launch_configuration:

Terraform will perform the following actions: 
 
  # module.webserver_cluster.aws_autoscaling_group.ex will be 
updated in-place 
  ~ resource "aws_autoscaling_group" "example" { 
        id                        = "webservers-stage-terraform-
20190516" 



      ~ launch_configuration      = "terraform-20190516" -> 
(known after apply) 
        (...) 
    } 
 
  # module.webserver_cluster.aws_launch_configuration.ex must be 
replaced 
+/- resource "aws_launch_configuration" "example" { 
      ~ id                          = "terraform-20190516" -> 
(known after apply) 
        image_id                    = "ami-0fb653ca2d3203ac1" 
        instance_type               = "t2.micro" 
      ~ name                        = "terraform-20190516" -> 
(known after apply) 
      ~ user_data                   = "bd7c0a6" -> "4919a13" # 
forces replacement 
        (...) 
    } 
 
Plan: 1 to add, 1 to change, 1 to destroy.

If you run apply, it’ll complete very quickly, and at first, nothing new will
be deployed. However, in the background, because you modified the launch
configuration, AWS will kick off the instance refresh process, as shown in
Figure 5-7.



Figure 5-7. An instance refresh is in progress.

AWS will initially launch one new instance, wait for it to pass health
checks, shut down one of the older instances, and then repeat the process
with the second instance, until the instance refresh is completed, as shown
in Figure 5-8.



Figure 5-8. An instance refresh is completed.

This process is entirely managed by AWS, is reasonably configurable,
handles errors pretty well, and requires no workarounds. The only
drawback is the process can sometimes be slow (taking up to 20 minutes to
replace just two servers), but other than that, it’s a much more robust
solution to use for most zero-downtime deployments.



In general, you should prefer to use first-class, native deployment options
like instance refresh whenever possible. Although such options weren’t
always available in the earlier days of Terraform, these days, many
resources support native deployment options. For example, if you’re using
Amazon Elastic Container Service (ECS) to deploy Docker containers, the
aws_ecs_service resource natively supports zero-downtime
deployments via the deployment_maximum_percent and
deployment _minimum_healthy_percent parameters; if you’re
using Kubernetes to deploy Docker containers, the
kubernetes_deployment resource natively supports zero-downtime
deployments by setting the strategy parameter to RollingUpdate
and providing configuration via the rolling_update block. Check the
docs for the resources you’re using, and make use of native functionality
when you can!

Valid Plans Can Fail
Sometimes, you run the plan command and it shows you a perfectly valid-
looking plan, but when you run apply, you’ll get an error. For example,
try to add an aws_iam_user resource with the exact same name you used
for the IAM user you created manually in Chapter 2:

resource "aws_iam_user" "existing_user" {
  # Make sure to update this to your own user name!
  name = "yevgeniy.brikman"
}

If you now run the plan command, Terraform will show you a plan that
looks reasonable:

Terraform will perform the following actions: 
 
  # aws_iam_user.existing_user will be created 
  + resource "aws_iam_user" "existing_user" { 
      + arn           = (known after apply) 
      + force_destroy = false 
      + id            = (known after apply) 



      + name          = "yevgeniy.brikman" 
      + path          = "/" 
      + unique_id     = (known after apply) 
    } 
 
Plan: 1 to add, 0 to change, 0 to destroy.

If you run the apply command, you’ll get the following error:

Error: Error creating IAM User yevgeniy.brikman: 
EntityAlreadyExists: 
User with name yevgeniy.brikman already exists. 
 
  on main.tf line 10, in resource "aws_iam_user" "existing_user": 
  10: resource "aws_iam_user" "existing_user" {

The problem, of course, is that an IAM user with that name already exists.
This can happen not just with IAM users but with almost any resource.
Perhaps someone created that resource manually or via CLI commands, but
either way, some identifier is the same, and that leads to a conflict. There
are many variations on this error, and Terraform newbies are often caught
off guard by them.

The key realization is that terraform plan looks only at resources in
its Terraform state file. If you create resources out of band—such as by
manually clicking around the AWS Console—they will not be in
Terraform’s state file, and, therefore, Terraform will not take them into
account when you run the plan command. As a result, a valid-looking plan
will still fail.

There are two main lessons to take away from this:

After you start using Terraform, you should only use Terraform.

When a part of your infrastructure is managed by Terraform, you should
never manually make changes to it. Otherwise, you not only set yourself
up for weird Terraform errors, but you also void many of the benefits of
using infrastructure as code in the first place, given that the code will no
longer be an accurate representation of your infrastructure.



If you have existing infrastructure, use the import command.

If you created infrastructure before you started using Terraform, you can
use the terraform import command to add that infrastructure to
Terraform’s state file so that Terraform is aware of and can manage that
infrastructure. The import command takes two arguments. The first
argument is the “address” of the resource in your Terraform
configuration files. This makes use of the same syntax as resource
references, such as <PROVIDER>_<TYPE>.<NAME> (e.g.,
aws_iam_user.existing_user). The second argument is a
resource-specific ID that identifies the resource to import. For example,
the ID for an aws_iam_user resource is the name of the user (e.g.,
yevgeniy.brikman), and the ID for an aws_instance is the EC2
Instance ID (e.g., i-190e22e5). The documentation at the bottom of the
page for each resource typically specifies how to import it.

For example, here is the import command that you can use to sync the
aws_iam_user you just added in your Terraform configurations with
the IAM user you created back in Chapter 2 (obviously, you should
replace “yevgeniy.brikman” with your own username in this command):

$ terraform import aws_iam_user.existing_user yevgeniy.brikman

Terraform will use the AWS API to find your IAM user and create an
association in its state file between that user and the
aws_iam_user.existing_user resource in your Terraform
configurations. From then on, when you run the plan command,
Terraform will know that an IAM user already exists and not try to
create it again.

Note that if you have a lot of existing resources that you want to import
into Terraform, writing the Terraform code for them from scratch and
importing them one at a time can be painful, so you might want to look
into tools such as terraformer and terracognita, which can import both
code and state from supported cloud environments automatically.

https://oreil.ly/MRCYv
https://oreil.ly/uemWF


Refactoring Can Be Tricky
A common programming practice is refactoring, in which you restructure
the internal details of an existing piece of code without changing its
external behavior. The goal is to improve the readability, maintainability,
and general hygiene of the code. Refactoring is an essential coding practice
that you should do regularly. However, when it comes to Terraform, or any
IaC tool, you have to be careful about what defines the “external behavior”
of a piece of code, or you will run into unexpected problems.

For example, a common refactoring practice is to rename a variable or a
function to give it a clearer name. Many IDEs even have built-in support for
refactoring and can automatically rename the variable or function for you,
across the entire codebase. Although such a renaming is something you
might do without thinking twice in a general-purpose programming
language, you need to be very careful about how you do it in Terraform, or
it could lead to an outage.

For example, the webserver-cluster module has an input variable
named cluster_name:

variable "cluster_name" {
  description = "The name to use for all the cluster resources"
  type        = string
}

Perhaps you start using this module for deploying microservices, and,
initially, you set your microservice’s name to foo. Later on, you decide that
you want to rename the service to bar. This might seem like a trivial
change, but it can actually cause an outage!

That’s because the webserver-cluster module uses the
cluster_name variable in a number of resources, including the name
parameters of two security groups and the ALB:

resource "aws_lb" "example" {
  name               = var.cluster_name
  load_balancer_type = "application"



  subnets            = data.aws_subnets.default.ids
  security_groups    = [aws_security_group.alb.id]
}

If you change the name parameter of certain resources, Terraform will
delete the old version of the resource and create a new version to replace it.
If the resource you are deleting happens to be an ALB, there will be nothing
to route traffic to your web server cluster until the new ALB boots up.
Similarly, if the resource you are deleting happens to be a security group,
your servers will reject all network traffic until the new security group is
created.

Another refactor that you might be tempted to do is to change a Terraform
identifier. For example, consider the aws_security_group resource in
the webserver-cluster module:

resource "aws_security_group" "instance" {
  # (...)
}

The identifier for this resource is called instance. Perhaps you were
doing a refactor and you thought it would be clearer to change this name to
cluster_instance:

resource "aws_security_group" "cluster_instance" {
  # (...)
}

What’s the result? Yup, you guessed it: downtime.

Terraform associates each resource identifier with an identifier from the
cloud provider, such as associating an iam_user resource with an AWS
IAM User ID or an aws_instance resource with an AWS EC2 Instance
ID. If you change the resource identifier, such as changing the
aws_security_group identifier from instance to
cluster_instance, as far as Terraform knows, you deleted the old
resource and have added a completely new one. As a result, if you apply



these changes, Terraform will delete the old security group and create a new
one, and in the time period in between, your servers will reject all network
traffic. You may run into similar problems if you change the identifier
associated with a module, split one module into multiple modules, or add
count or for_each to a resource or module that didn’t have it before.

There are four main lessons that you should take away from this discussion:

Always use the plan command

You can catch all of these gotchas by running the plan command,
carefully scanning the output, and noticing that Terraform plans to
delete a resource that you probably don’t want deleted.

Create before destroy

If you do want to replace a resource, think carefully about whether its
replacement should be created before you delete the original. If so, you
might be able to use create_before_destroy to make that
happen. Alternatively, you can also accomplish the same effect through
two manual steps: first, add the new resource to your configurations and
run the apply command; second, remove the old resource from your
configurations and run the apply command again.

Refactoring may require changing state

If you want to refactor your code without accidentally causing
downtime, you’ll need to update the Terraform state accordingly.
However, you should never update Terraform state files by hand!
Instead, you have two options: do it manually by running terraform
state mv commands, or do it automatically by adding a moved
block to your code.

Let’s first look at the terraform state mv command, which has
the following syntax:

terraform state mv <ORIGINAL_REFERENCE> <NEW_REFERENCE>



where ORIGINAL_REFERENCE is the reference expression to the
resource as it is now and NEW_REFERENCE is the new location you
want to move it to. For example, if you’re renaming an
aws_security_group group from instance to
cluster_instance, you could run the following:

$ terraform state mv \ 

  aws_security_group.instance \ 

  aws_security_group.cluster_instance

This instructs Terraform that the state that used to be associated with
aws _security_group.instance should now be associated with
aws_security_group.cluster_instance. If you rename an
identifier and run this command, you’ll know you did it right if the
subsequent terraform plan shows no changes.

Having to remember to run CLI commands manually is error prone,
especially if you refactored a module used by dozens of teams in your
company, and each of those teams needs to remember to run
terraform state mv to avoid downtime. Fortunately, Terraform
1.1 has added a way to handle this automatically: moved blocks. Any
time you refactor your code, you should add a moved block to capture
how the state should be updated. For example, to capture that the
aws_security_group resource was renamed from instance to
cluster_instance, you would add the following moved block:

moved {

  from = aws_security_group.instance

  to   = aws_security_group.cluster_instance

}



Now, whenever anyone runs apply on this code, Terraform will
automatically detect if it needs to update the state file:

Terraform will perform the following actions: 

 

  # aws_security_group.instance has moved to 

  # aws_security_group.cluster_instance 

    resource "aws_security_group" "cluster_instance" { 

        name                   = "moved-example-security-

group" 

        tags                   = {} 

        # (8 unchanged attributes hidden) 

    } 

 

Plan: 0 to add, 0 to change, 0 to destroy. 

 

Do you want to perform these actions? 

  Terraform will perform the actions described above. 

  Only 'yes' will be accepted to approve. 

 

  Enter a value:

If you enter yes, Terraform will update the state automatically, and as
the plan shows no resources to add, change, or destroy, Terraform will
make no other changes—which is exactly what you want!

Some parameters are immutable



The parameters of many resources are immutable, so if you change
them, Terraform will delete the old resource and create a new one to
replace it. The documentation for each resource often specifies what
happens if you change a parameter, so get used to checking the
documentation. And, once again, make sure to always use the plan
command and consider whether you should use a
create_before_destroy strategy.

Conclusion
Although Terraform is a declarative language, it includes a large number of
tools, such as variables and modules, which you saw in Chapter 4, and
count, for_each, for, create_before_destroy, and built-in
functions, which you saw in this chapter, that give the language a surprising
amount of flexibility and expressive power. There are many permutations of
the if-statement tricks shown in this chapter, so spend some time browsing
the functions documentation, and let your inner hacker go wild. OK, maybe
not too wild, as someone still needs to maintain your code, but just wild
enough that you can create clean, beautiful APIs for your modules.

Let’s now move on to Chapter 6, where I’ll go over how create modules
that are not only clean and beautiful but also handle secrets and sensitive
data in a safe and secure manner.

1  Credit for this technique goes to Paul Hinze.

https://oreil.ly/Fs2L6
https://bit.ly/2lksQgv


Chapter 6. Managing Secrets
with Terraform

At some point, you and your software will be entrusted with a variety of
secrets, such as database passwords, API keys, TLS certificates, SSH keys,
GPG keys, and so on. This is all sensitive data that, if it were to get into the
wrong hands, could do a lot of damage to your company and its customers.
If you build software, it is your responsibility to keep those secrets secure.

For example, consider the following Terraform code for deploying a
database:

resource "aws_db_instance" "example" {
  identifier_prefix   = "terraform-up-and-running"
  engine              = "mysql"
  allocated_storage   = 10
  instance_class      = "db.t2.micro"
  skip_final_snapshot = true
  db_name             = var.db_name 
 
  # How to set these parameters securely?
  username = "???"
  password = "???"
}

This code requires you to set two secrets, the username and password,
which are the credentials for the master user of the database. If the wrong
person gets access to them, it could be catastrophic, as these credentials
give you superuser access to that database and all the data within it. So,
how do you keep these secrets secure?

This is part of the broader topic of secrets management, which is the focus
of this chapter. This chapter will cover:

Secret management basics



Secret management tools

Secret management tools with Terraform

Secret Management Basics
The first rule of secrets management is:

Do not store secrets in plain text.

The second rule of secrets management is:

DO NOT STORE SECRETS IN PLAIN TEXT.

Seriously, don’t do it. For example, do not hardcode your database
credentials directly in your Terraform code and check it into version
control:

resource "aws_db_instance" "example" {
  identifier_prefix   = "terraform-up-and-running"
  engine              = "mysql"
  allocated_storage   = 10
  instance_class      = "db.t2.micro"
  skip_final_snapshot = true
  db_name             = var.db_name 
 
  # DO NOT DO THIS!!!
  username = "admin"
  password = "password"
  # DO NOT DO THIS!!!
}

Storing secrets in plain text in version control is a bad idea. Here are just a
few of the reasons why:

Anyone who has access to the version control system has access to that
secret.

In the preceding example, every single developer at your company who
can access that Terraform code will have access to the master
credentials for your database.



Every computer that has access to the version control system keeps a copy
of that secret.

Every single computer that has ever checked out that repo may still
have a copy of that secret on its local hard drive. That includes the
computer of every developer on your team, every computer involved in
CI (e.g., Jenkins, CircleCI, GitLab, etc.), every computer involved in
version control (e.g., GitHub, GitLab, BitBucket), every computer
involved in deployment (e.g., all your pre-prod and prod environments),
every computer involved in backup (e.g., CrashPlan, Time Machine,
etc.), and so on.

Every piece of software you run has access to that secret.

Because the secrets are sitting in plain text on so many hard drives,
every single piece of software running on any of those computers can
potentially read that secret.

There’s no way to audit or revoke access to that secret.

When secrets are sitting on hundreds of hard drives in plain text, you
have no way to know who accessed them (there’s no audit log) and no
easy way to revoke access.

In short, if you store secrets in plain text, you are giving malicious actors
(e.g., hackers, competitors, disgruntled former employees) countless ways
to access your company’s most sensitive data—e.g., by compromising the
version control system, or by compromising any of the computers you use,
or by compromising any piece of software on any of those computers—and
you’ll have no idea if you were compromised or have any easy way to fix
things if you were.

Therefore, it’s essential that you use a proper secret management tool to
store your secrets.



Secret Management Tools
A comprehensive overview of all aspects of secret management is beyond
the scope of this book, but to be able to use secret management tools with
Terraform, it’s worth briefly touching on the following topics:

The types of secrets you store

The way you store secrets

The interface you use to access secrets

A comparison of secret management tools

The Types of Secrets You Store
There are three primary types of secrets: personal secrets, customer secrets,
and infrastructure secrets.

Personal secrets

Belong to an individual. Examples include the usernames and
passwords for websites you visit, your SSH keys, and your Pretty Good
Privacy (PGP) keys.

Customer secrets

Belong to your customers. Note that if you run software for other
employees of your company—e.g., you manage your company’s
internal Active Directory server—then those other employees are your
customers. Examples include the usernames and passwords that your
customers use to log into your product, personally identifiable info (PII)
for your customers, and personal health information (PHI) for your
customers.

Infrastructure secrets

Belong to your infrastructure. Examples include database passwords,
API keys, and TLS certificates.



Most secret management tools are designed to store exactly one of these
types of secrets, and while you could try to force it to store the other types,
that’s rarely a good idea from a security or usability standpoint. For
example, the way you store passwords that are infrastructure secrets is
completely different from how you store passwords that are customer
secrets: for the former, you’d typically use an encryption algorithm such as
AES (Advanced Encryption Standard), perhaps with a nonce, as you need
to be able to decrypt the secrets and get back the original password; on the
other hand, for the latter, you’d typically use a hashing algorithm (e.g.,
bcrypt) with a salt, as there should be no way to get back the original
password. Using the wrong approach can be catastrophic, so use the right
tool for the job!

The Way You Store Secrets
The two most common strategies for storing secrets are to use either a file-
based secret store or a centralized secret store.

File-based secret stores store secrets in encrypted files, which are typically
checked into version control. To encrypt the files, you need an encryption
key. This key is itself a secret! This creates a bit of a conundrum: How do
you securely store that key? You can’t check the key into version control as
plain text, as then there’s no point of encrypting anything with it. You could
encrypt the key with another key, but then all you’ve done is kicked the can
down the road, as you still have to figure out how to securely store that
second key.

The most common solution to this conundrum is to store the key in a key
management service (KMS) provided by your cloud provider, such as AWS
KMS, GCP KMS, or Azure Key Vault. This solves the kick-the-can-down-
the-road problem by trusting the cloud provider to securely store the secret
and manage access to it. Another option is to use PGP keys. Each developer
can have their own PGP key, which consists of a public key and a private
key. If you encrypt a secret with one or more public keys, only developers
with the corresponding private keys will be able to decrypt those secrets.



The private keys, in turn, are protected by a password that the developer
either memorizes or stores in a personal secrets manager.

Centralized secret stores are typically web services that you talk to over the
network that encrypt your secrets and store them in a data store such as
MySQL, PostgreSQL, DynamoDB, etc. To encrypt these secrets, these
centralized secret stores need an encryption key. Typically, the encryption
key is managed by the service itself, or the service relies on a cloud
provider’s KMS.

The Interface You Use to Access Secrets
Most secret management tools can be accessed via an API, CLI, and/or UI.

Just about all centralized secret stores expose an API that you can consume
via network requests: e.g., a REST API you access over HTTP. The API is
convenient for when your code needs to programmatically read secrets. For
example, when an app is booting up, it can make an API call to your
centralized secret store to retrieve a database password. Also, as you’ll see
later in this chapter, you can write Terraform code that, under the hood, uses
a centralized secret store’s API to retrieve secrets.

All the file-based secret stores work via a command-line interface (CLI).
Many of the centralized secret stores also provide CLI tools that, under the
hood, make API calls to the service. CLI tools are a convenient way for
developers to access secrets (e.g., using a few CLI commands to encrypt a
file) and for scripting (e.g., writing a script to encrypt secrets).

Some of the centralized secret stores also expose a user interface (UI) via
the web, desktop, or mobile. This is potentially an even more convenient
way for everyone on your team to access secrets.

A Comparison of Secret Management Tools
Table 6-1 shows a comparison of popular secret management tools, broken
down by the three considerations defined in the previous sections.



Table 6-1. A comparison of secret management tools

Types of secrets Secret storage Secret interface

HashiCorp Vault Infrastructure Centralized service UI, API, CLI

AWS Secrets Manager Infrastructure Centralized service UI, API, CLI

Google Secrets Manager Infrastructure Centralized service UI, API, CLI

Azure Key Vault Infrastructure Centralized service UI, API, CLI

Confidant Infrastructure Centralized service UI, API, CLI

Keywhiz Infrastructure Centralized service API, CLI

sops Infrastructure Files CLI

git-secret Infrastructure Files CLI

1Password Personal Centralized service UI, API, CLI

LastPass Personal Centralized service UI, API, CLI

Bitwarden Personal Centralized service UI, API, CLI

KeePass Personal Files UI, CLI

Keychain (macOS) Personal Files UI, CLI

Credential Manager (Windows) Personal Files UI, CLI

pass Personal Files CLI

Active Directory Customer Centralized service UI, API, CLI

Auth0 Customer Centralized service UI, API, CLI

Okta Customer Centralized service UI, API, CLI

OneLogin Customer Centralized service UI, API, CLI

Ping Customer Centralized service UI, API, CLI

AWS Cognito Customer Centralized service UI, API, CLI

a



Types of secrets Secret storage Secret interface

a  Vault supports multiple secret engines, most of which are designed for infrastructure
secrets, but a few support customer secrets as well.

Since this is a book about Terraform, from here on out, I’ll mostly be
focusing on secret management tools designed for infrastructure secrets that
are accessed through an API or the CLI (although I’ll mention personal
secret management tools from time to time too, as those often contain the
secrets you need to authenticate to the infrastructure secret tools).

Secret Management Tools with Terraform
Let’s now turn to how to use these secret management tools with Terraform,
going through each of the three places where your Terraform code is likely
to brush up against secrets:

Providers

Resources and data sources

State files and plan files

Providers
Typically, your first exposure to secrets when working with Terraform is
when you have to authenticate to a provider. For example, if you want to
run terraform apply on code that uses the AWS Provider, you’ll need
to first authenticate to AWS, and that typically means using your access
keys, which are secrets. How should you store those secrets? And how
should you make them available to Terraform?

There are many ways to answer these questions. One way you should not
do it, even though it occasionally comes up in the Terraform
documentation, is by putting secrets directly into the code, in plain text:



provider "aws" {
  region = "us-east-2" 
 
  # DO NOT DO THIS!!!
  access_key = "(ACCESS_KEY)"
  secret_key = "(SECRET_KEY)"
  # DO NOT DO THIS!!!
}

Storing credentials this way, in plain text, is not secure, as discussed earlier
in this chapter. Moreover, it’s also not practical, as this would hardcode you
to using one set of credentials for all users of this module, whereas in most
cases, you’ll need different credentials on different computers (e.g., when
different developers or your CI server runs apply) and in different
environments (dev, stage, prod).

There are several techniques that are far more secure for storing your
credentials and making them accessible to Terraform providers. Let’s take a
look at these techniques, grouping them based on the user who is running
Terraform:

Human users

Developers running Terraform on their own computers.

Machine users

Automated systems (e.g., a CI server) running Terraform with no
humans present.

Human users
Just about all Terraform providers allow you to specify your credentials in
some way other than putting them directly into the code. The most common
option is to use environment variables. For example, here’s how you use
environment variables to authenticate to AWS:

$  export AWS_ACCESS_KEY_ID=(YOUR_ACCESS_KEY_ID) 
$  export AWS_SECRET_ACCESS_KEY=(YOUR_SECRET_ACCESS_KEY)



Setting your credentials as environment variables keeps plain-text secrets
out of your code, ensures that everyone running Terraform has to provide
their own credentials, and ensures that credentials are only ever stored in
memory, and not on disk.

One important question you may ask is where to store the access key ID
and secret access key in the first place. They are too long and random to
memorize, but if you store them on your computer in plain text, then you’re
still putting those secrets at risk. Since this section is focused on human
users, the solution is to store your access keys (and other secrets) in a secret
manager designed for personal secrets. For example, you could store your
access keys in 1Password or LastPass and copy/paste them into the
export commands in your terminal.

If you’re using these credentials frequently on the CLI, an even more
convenient option is to use a secret manager that supports a CLI interface.
For example, 1Password offers a CLI tool called op. On Mac and Linux,
you can use op to authenticate to 1Password on the CLI as follows:

$ eval $(op signin my)

Once you’ve authenticated, assuming you had used the 1Password app to
store your access keys under the name “aws-dev” with fields “id” and
“secret”, here’s how you can use op to set those access keys as environment
variables:

$ export AWS_ACCESS_KEY_ID=$(op get item 'aws-dev' --fields 'id') 
$ export AWS_SECRET_ACCESS_KEY=$(op get item 'aws-dev' --fields 
'secret')

While tools like 1Password and op are great for general-purpose secrets
management, for certain providers, there are dedicated CLI tools to make
this even easier. For example, for authenticating to AWS, you can use the
open source tool aws-vault. You can save your access keys using the
aws-vault add command under a profile named dev as follows:
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$ aws-vault add dev 
Enter Access Key Id: (YOUR_ACCESS_KEY_ID) 
Enter Secret Key: (YOUR_SECRET_ACCESS_KEY)

Under the hood, aws-vault will store these credentials securely in your
operating system’s native password manager (e.g., Keychain on macOS,
Credential Manager on Windows). Once you’ve stored these credentials,
now you can authenticate to AWS for any CLI command as follows:

$ aws-vault exec <PROFILE> -- <COMMAND>

where PROFILE is the name of a profile you created earlier via the add
command (e.g., dev) and COMMAND is the command to execute. For
example, here’s how you can use the dev credentials you saved earlier to
run terraform apply:

$ aws-vault exec dev -- terraform apply

The exec command automatically uses AWS STS to fetch temporary
credentials and exposes them as environment variables to the command
you’re executing (in this case, terraform apply). This way, not only
are your permanent credentials stored in a secure manner (in your operating
system’s native password manager), but now, you’re also only exposing
temporary credentials to any process you run, so the risk of leaking
credentials is minimized. aws-vault also has native support for assuming
IAM roles, using multifactor authentication (MFA), logging into accounts
on the web console, and more.

Machine users
Whereas a human user can rely on a memorized password, what do you do
in cases where there’s no human present? For example, if you’re setting up
a continuous integration / continuous delivery (CI/CD) pipeline to
automatically run Terraform code, how do you securely authenticate that
pipeline? In this case, you are dealing with authentication for a machine
user. The question is, how do you get one machine (e.g., your CI server) to



authenticate itself to another machine (e.g., AWS API servers) without
storing any secrets in plain text?

The solution here heavily depends on the type of machines involved: that is,
the machine you’re authenticating from and the machine you’re
authenticating to. Let’s go through three examples:

CircleCI as a CI server, with stored secrets

EC2 Instance running Jenkins as a CI server, with IAM roles

GitHub Actions as a CI server, with OIDC

WARNING: SIMPLIFIED EXAMPLES
This section contains examples that fully flush out how to handle provider
authentication in a CI/CD context, but all other aspects of the CI/CD workflow are
highly simplified. You’ll see more complete, end-to-end, production-ready CI/CD
workflows in Chapter 9.

CircleCI as a CI server, with stored secrets

Let’s imagine that you want to use CircleCI, a popular managed CI/CD
platform, to run Terraform code. With CircleCI, you configure your build
steps in a .circleci/config.yml file, where you might define a job to run
terraform apply that looks like this:

version: '2.1'
orbs:
  # Install Terraform using a CircleCi Orb
  terraform: circleci/terraform@1.1.0
jobs:
  # Define a job to run 'terraform apply'
  terraform_apply:
    executor: terraform/default
    steps:
      - checkout         # git clone the code
      - terraform/init   # Run 'terraform init'
      - terraform/apply  # Run 'terraform apply'
workflows:
  # Create a workflow to run the 'terraform apply' job defined 



above
  deploy:
    jobs:
      - terraform_apply
    # Only run this workflow on commits to the main branch
    filters:
      branches:
        only:
          - main

With a tool like CircleCI, the way to authenticate to a provider is to create a
machine user in that provider (that is, a user solely used for automation, and
not by any human), store the credentials for that machine user in CircleCI in
what’s called a CircleCI Context, and when your build runs, CircleCI will
expose the credentials in that Context to your workflows as environment
variables. For example, if your Terraform code needs to authenticate to
AWS, you would create a new IAM user in AWS, give that IAM user the
permissions it needs to deploy your Terraform changes, and manually copy
that IAM user’s access keys into a CircleCI Context, as shown in Figure 6-
1.



Figure 6-1. A CircleCI Context with AWS credentials.

Finally, you update the workflows in your .circleci/config.yml file to use
your CircleCI Context via the context parameter:

workflows:
  # Create a workflow to run the 'terraform apply' job defined 
above



  deploy:
    jobs:
      - terraform_apply
    # Only run this workflow on commits to the main branch
    filters:
      branches:
        only:
          - main
    # Expose secrets in the CircleCI context as environment 
variables
    context:
      - example-context

When your build runs, CircleCI will automatically expose the secrets in that
Context as environment variables—in this case, as the environment
variables AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY—
and terraform apply will automatically use those environment
variables to authenticate to your provider.

The biggest drawbacks to this approach are that (a) you have to manually
manage credentials, and (b) as a result, you have to use permanent
credentials, which once saved in CircleCI, rarely (if ever) change. The next
two examples show alternative approaches.

EC2 Instance running Jenkins as a CI server, with IAM roles

If you’re using an EC2 Instance to run Terraform code—e.g., you’re
running Jenkins on an EC2 Instance as a CI server—the solution I
recommend for machine user authentication is to give that EC2 Instance an
IAM role. An IAM role is similar to an IAM user, in that it’s an entity in
AWS that can be granted IAM permissions. However, unlike IAM users,
IAM roles are not associated with any one person and do not have
permanent credentials (password or access keys). Instead, a role can be
assumed by other IAM entities: for example, an IAM user might assume a
role to temporarily get access to different permissions than they normally
have; many AWS services, such as EC2 Instances, can assume IAM roles to
grant those services permissions in your AWS account.

For example, here’s code you’ve seen many times to deploy an EC2
Instance:



resource "aws_instance" "example" {
  ami           = "ami-0fb653ca2d3203ac1"
  instance_type = "t2.micro"
}

To create an IAM role, you must first define an assume role policy, which is
an IAM Policy that defines who is allowed to assume the IAM role. You
could write the IAM Policy in raw JSON, but Terraform has a convenient
aws_iam_policy_document data source that can create the JSON for
you. Here’s how you can use an aws_iam_policy_document to
define an assume role policy that allows the EC2 service to assume an IAM
role:

data "aws_iam_policy_document" "assume_role" { 
  statement {
    effect  = "Allow"
    actions = ["sts:AssumeRole"] 
 
    principals {
      type        = "Service"
      identifiers = ["ec2.amazonaws.com"] 
    } 
  }
}

Now, you can use the aws_iam_role resource to create an IAM role and
pass it the JSON from your aws_iam_policy_document to use as the
assume role policy:

resource "aws_iam_role" "instance" {
  name_prefix        = var.name
  assume_role_policy = 
data.aws_iam_policy_document.assume_role.json
}

You now have an IAM role, but by default, IAM roles don’t give you any
permissions. So, the next step is to attach one or more IAM policies to the
IAM role that specify what you can actually do with the role once you’ve
assumed it. Let’s imagine that you’re using Jenkins to run Terraform code
that deploys EC2 Instances. You can use the



aws_iam_policy_document data source to define an IAM Policy that
gives admin permissions over EC2 Instances as follows:

data "aws_iam_policy_document" "ec2_admin_permissions" { 
  statement {
    effect    = "Allow"
    actions   = ["ec2:*"]
    resources = ["*"] 
  }
}

And you can attach this policy to your IAM role using the
aws_iam_role_policy resource:

resource "aws_iam_role_policy" "example" {
  role   = aws_iam_role.instance.id
  policy = 
data.aws_iam_policy_document.ec2_admin_permissions.json
}

The final step is to allow your EC2 Instance to automatically assume that
IAM role by creating an instance profile:

resource "aws_iam_instance_profile" "instance" {
  role = aws_iam_role.instance.name
}

And then tell your EC2 Instance to use that instance profile via the
iam_instance_profile parameter:

resource "aws_instance" "example" {
  ami           = "ami-0fb653ca2d3203ac1"
  instance_type = "t2.micro" 
 
  # Attach the instance profile
  iam_instance_profile = aws_iam_instance_profile.instance.name
}

Under the hood, AWS runs an instance metadata endpoint on every EC2
Instance at http://169.254.169.254. This is an endpoint that can only be

http://169.254.169.254/


reached by processes running on the instance itself, and those processes can
use that endpoint to fetch metadata about the instance. For example, if you
SSH to an EC2 Instance, you can query this endpoint using curl:

$ ssh ubuntu@<IP_OF_INSTANCE> 
Welcome to Ubuntu 20.04.3 LTS (GNU/Linux 5.11.0-1022-aws x86_64) 
(...) 
 
$ curl http://169.254.169.254/latest/meta-data/ 
ami-id 
ami-launch-index 
ami-manifest-path 
block-device-mapping/ 
events/ 
hibernation/ 
hostname 
identity-credentials/ 
(...)

If the instance has an IAM role attached (via an instance profile), that
metadata will include AWS credentials that can be used to authenticate to
AWS and assume that IAM role. Any tool that uses the AWS SDK, such as
Terraform, knows how to use these instance metadata endpoint credentials
automatically, so as soon as you run terraform apply on the EC2
Instance with this IAM role, your Terraform code will authenticate as this
IAM role, which will thereby grant your code the EC2 admin permissions it
needs to run successfully.

For any automated process running in AWS, such as a CI server, IAM roles
provide a way to authenticate (a) without having to manage credentials
manually, and (b) the credentials AWS provides via the instance metadata
endpoint are always temporary, and rotated automatically. These are two big
advantages over the manually managed, permanent credentials with a tool
like CircleCI that runs outside of your AWS account. However, as you’ll
see in the next example, in some cases, it’s possible to have these same
advantages for external tools, too.

GitHub Actions as a CI server, with OIDC
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GitHub Actions is another popular managed CI/CD platform you might
want to use to run Terraform. In the past, GitHub Actions required you to
manually copy credentials around, just like CircleCI. However, as of 2021,
GitHub Actions offers a better alternative: Open ID Connect (OIDC). Using
OIDC, you can establish a trusted link between the CI system and your
cloud provider (GitHub Actions supports AWS, Azure, and Google Cloud)
so that your CI system can authenticate to those providers without having to
manage any credentials manually.

You define GitHub Actions workflows in YAML files in a
.github/workflows folder, such as the terraform.yml file shown here:

name: Terraform Apply
# Only run this workflow on commits to the main branch
on:
  push:
    branches:
      - 'main'
jobs:
  TerraformApply:
    runs-on: ubuntu-latest
    steps:
      - uses: actions/checkout@v2 
 
      # Run Terraform using HashiCorp's setup-terraform Action
      - uses: hashicorp/setup-terraform@v1
          with:
            terraform_version: 1.1.0
            terraform_wrapper: false
        run: |
          terraform init
          terraform apply -auto-approve

If your Terraform code talks to a provider such as AWS, you need to
provide a way for this workflow to authenticate to that provider. To do this
using OIDC,  the first step is to create an IAM OIDC identity provider in
your AWS account, using the
aws_iam_openid_connect_provider resource, and to configure it
to trust the GitHub Actions thumbprint, fetched via the
tls_certificate data source:

3



# Create an IAM OIDC identity provider that trusts GitHub
resource "aws_iam_openid_connect_provider" "github_actions" {
  url             = "https://token.actions.githubusercontent.com"
  client_id_list  = ["sts.amazonaws.com"]
  thumbprint_list = [ 
    data.tls_certificate.github.certificates[0].sha1_fingerprint 
  ]
} 
 
# Fetch GitHub's OIDC thumbprint
data "tls_certificate" "github" {
  url = "https://token.actions.githubusercontent.com"
}

Now, you can create IAM roles exactly as in the previous section—e.g., an
IAM role with EC2 admin permissions attached—except the assume role
policy for those IAM roles will look different:

data "aws_iam_policy_document" "assume_role_policy" { 
  statement {
    actions = ["sts:AssumeRoleWithWebIdentity"]
    effect  = "Allow" 
 
    principals {
      identifiers = 
[aws_iam_openid_connect_provider.github_actions.arn]
      type        = "Federated" 
    } 
 
    condition {
      test     = "StringEquals"
      variable = "token.actions.githubusercontent.com:sub"
      # The repos and branches defined in 
var.allowed_repos_branches
      # will be able to assume this IAM role
      values = [ 
        for a in var.allowed_repos_branches : 
        
"repo:${a["org"]}/${a["repo"]}:ref:refs/heads/${a["branch"]}" 
      ] 
    } 
  }
}



This policy allows the IAM OIDC identity provider to assume the IAM role
via federated authentication. Note the condition block, which ensures
that only the specific GitHub repos and branches you specify via the
allowed_repos_branches input variable can assume this IAM role:

variable "allowed_repos_branches" {
  description = "GitHub repos/branches allowed to assume the IAM 
role."
  type = list(object({
    org    = string
    repo   = string
    branch = string 
  }))
  # Example:
  # allowed_repos_branches = [
  #   {
  #     org    = "brikis98"
  #     repo   = "terraform-up-and-running-code"
  #     branch = "main"
  #   }
  # ]
}

This is important to ensure you don’t accidentally allow all GitHub repos to
authenticate to your AWS account! You can now configure your builds in
GitHub Actions to assume this IAM role. First, at the top of your workflow,
give your build the id-token: write permission:

permissions:
  id-token: write

Next, add a build step just before running Terraform to authenticate to AWS
using the configure-aws-credentials action:

      # Authenticate to AWS using OIDC
      - uses: aws-actions/configure-aws-credentials@v1
        with:
          # Specify the IAM role to assume here
          role-to-assume: arn:aws:iam::123456789012:role/example-
role
          aws-region: us-east-2 



 
      # Run Terraform using HashiCorp's setup-terraform Action
      - uses: hashicorp/setup-terraform@v1
          with:
            terraform_version: 1.1.0
            terraform_wrapper: false
        run: |
          terraform init
          terraform apply -auto-approve

Now, when you run this build in one of the repos and branches in the
allowed_repos_branches variable, GitHub will be able to assume
your IAM role automatically, using temporary credentials, and Terraform
will authenticate to AWS using that IAM role, all without having to manage
any credentials manually.

Resources and Data Sources
The next place you’ll run into secrets with your Terraform code is with
resources and data sources. For example, you saw earlier in the chapter the
example of passing database credentials to the aws_db_instance
resource:

resource "aws_db_instance" "example" {
  identifier_prefix   = "terraform-up-and-running"
  engine              = "mysql"
  allocated_storage   = 10
  instance_class      = "db.t2.micro"
  skip_final_snapshot = true
  db_name             = var.db_name 
 
  # DO NOT DO THIS!!!
  username = "admin"
  password = "password"
  # DO NOT DO THIS!!!
}

I’ve said it multiple times in this chapter already, but it’s such an important
point that it’s worth repeating again: storing those credentials in the code, as
plain text, is a bad idea. So, what’s a better way to do it?



There are three main techniques you can use:

Environment variables

Encrypted files

Secret stores

Environment variables
This first technique, which you saw back in Chapter 3, as well as earlier in
this chapter when talking about providers, keeps plain-text secrets out of
your code by taking advantage of Terraform’s native support for reading
environment variables.

To use this technique, declare variables for the secrets you wish to pass in:

variable "db_username" {
  description = "The username for the database"
  type        = string
  sensitive   = true
} 
 
variable "db_password" {
  description = "The password for the database"
  type        = string
  sensitive   = true
}

Just as in Chapter 3, these variables are marked with sensitive =
true to indicate they contain secrets (so Terraform won’t log the values
when you run plan or apply), and these variables do not have a
default (so as not to store secrets in plain text). Next, pass the variables
to the Terraform resources that need those secrets:

resource "aws_db_instance" "example" {
  identifier_prefix   = "terraform-up-and-running"
  engine              = "mysql"
  allocated_storage   = 10
  instance_class      = "db.t2.micro"
  skip_final_snapshot = true
  db_name             = var.db_name 



 
  # Pass the secrets to the resource
  username = var.db_username
  password = var.db_password
}

Now you can pass in a value for each variable foo by setting the
environment variable TF_VAR_foo:

$  export TF_VAR_db_username=(DB_USERNAME) 
$  export TF_VAR_db_password=(DB_PASSWORD)

Passing in secrets via environment variables helps you avoid storing secrets
in plain text in your code, but it doesn’t answer an important question: How
do you store the secrets securely? One nice thing about using environment
variables is that they work with almost any type of secrets management
solution. For example, one option is to store the secrets in a personal secrets
manager (e.g., 1Password) and manually set those secrets as environment
variables in your terminal. Another option is to store the secrets in a
centralized secret store (e.g., HashiCorp Vault) and write a script that uses
that secret store’s API or CLI to read those secrets out and set them as
environment variables.

Using environment variables has the following advantages:

Keep plain-text secrets out of your code and version control system.

Storing secrets is easy, as you can use just about any other secret
management solution. That is, if your company already has a way to
manage secrets, you can typically find a way to make it work with
environment variables.

Retrieving secrets is easy, as reading environment variables is
straightforward in every language.

Integrating with automated tests is easy, as you can easily set the
environment variables to mock values.



Using environment variables doesn’t cost any money, unlike some of
the other secret management solutions discussed later.

Using environment variables has the following drawbacks:

Not everything is defined in the Terraform code itself. This makes
understanding and maintaining the code harder. Everyone using your
code has to know to take extra steps to either manually set these
environment variables or run a wrapper script.

Standardizing secret management practices is harder. Since all the
management of secrets happens outside of Terraform, the code doesn’t
enforce any security properties, and it’s possible someone is still
managing the secrets in an insecure way (e.g., storing them in plain
text).

Since the secrets are not versioned, packaged, and tested with your
code, configuration errors are more likely, such as adding a new secret
in one environment (e.g., staging) but forgetting to add it in another
environment (e.g., production).

Encrypted files
The second technique relies on encrypting the secrets, storing the ciphertext
in a file, and checking that file into version control.

To encrypt some data, such as some secrets in a file, you need an encryption
key. As mentioned earlier in this chapter, this encryption key is itself a
secret, so you need a secure way to store it. The typical solution is to either
use your cloud provider’s KMS (e.g., AWS KMS, Google KMS, Azure Key
Vault) or to use the PGP keys of one or more developers on your team.

Let’s look at an example that uses AWS KMS. First, you’ll need to create a
KMS Customer Managed Key (CMK), which is an encryption key that
AWS manages for you. To create a CMK, you first have to define a key
policy, which is an IAM Policy that defines who can use that CMK. To keep
this example simple, let’s create a key policy that gives the current user
admin permissions over the CMK. You can fetch the current user’s



information—their username, ARN, etc.—using the
aws_caller_identity data source:

provider "aws" {
  region = "us-east-2"
} 
 
data "aws_caller_identity" "self" {}

And now you can use the aws_caller_identity data source’s outputs
inside an aws_iam_policy_document data source to create a key
policy that gives the current user admin permissions over the CMK:

data "aws_iam_policy_document" "cmk_admin_policy" { 
  statement {
    effect    = "Allow"
    resources = ["*"]
    actions   = ["kms:*"] 
    principals {
      type        = "AWS"
      identifiers = [data.aws_caller_identity.self.arn] 
    } 
  }
}

Next, you can create the CMK using the aws_kms_key resource:

resource "aws_kms_key" "cmk" {
  policy = data.aws_iam_policy_document.cmk_admin_policy.json
}

Note that, by default, KMS CMKs are only identified by a long numeric
identifier (e.g., b7670b0e-ed67-28e4-9b15-0d61e1485be3), so
it’s a good practice to also create a human-friendly alias for your CMK
using the aws_kms_alias resource:

resource "aws_kms_alias" "cmk" {
  name          = "alias/kms-cmk-example"
  target_key_id = aws_kms_key.cmk.id
}



The preceding alias will allow you to refer to your CMK as alias/kms-
cmk-example when using the AWS API and CLI, rather than a long
identifier such as b7670b0e-ed67-28e4-9b15-0d61e1485be3.
Once you’ve created the CMK, you can start using it to encrypt and decrypt
data. Note that, by design, you’ll never be able to see (and, therefore, to
accidentally leak) the underlying encryption key. Only AWS has access to
that encryption key, but you can make use of it by using the AWS API and
CLI, as described next.

First, create a file called db-creds.yml with some secrets in it, such as the
database credentials:

username: admin
password: password

Note: do not check this file into version control, as you haven’t encrypted it
yet! To encrypt this data, you can use the aws kms encrypt command
and write the resulting ciphertext to a new file. Here’s a small Bash script
(for Linux/Unix/macOS) called encrypt.sh that performs these steps using
the AWS CLI:

CMK_ID="$1"
AWS_REGION="$2"
INPUT_FILE="$3"
OUTPUT_FILE="$4" 
 
echo "Encrypting contents of $INPUT_FILE using CMK $CMK_ID..."
ciphertext=$(aws kms encrypt \ 
  --key-id "$CMK_ID" \ 
  --region "$AWS_REGION" \ 
  --plaintext "fileb://$INPUT_FILE" \ 
  --output text \ 
  --query CiphertextBlob) 
 
echo "Writing result to $OUTPUT_FILE..."
echo "$ciphertext" > "$OUTPUT_FILE" 
 
echo "Done!"



Here’s how you can use encrypt.sh to encrypt the db-creds.yml file with the
KMS CMK you created earlier and store the resulting ciphertext in a new
file called db-creds.yml.encrypted:

$ ./encrypt.sh \ 
  alias/kms-cmk-example \ 
  us-east-2 \ 
  db-creds.yml \ 
  db-creds.yml.encrypted 
 
Encrypting contents of db-creds.yml using CMK alias/kms-cmk-
example... 
Writing result to db-creds.yml.encrypted... 
Done!

You can now delete db-creds.yml (the plain-text file) and safely check db-
creds.yml.encrypted (the encrypted file) into version control. At this point,
you have an encrypted file with some secrets inside of it, but how do you
make use of that file in your Terraform code?

The first step is to decrypt the secrets in this file using the
aws_kms_secrets data source:

data "aws_kms_secrets" "creds" { 
  secret {
    name    = "db"
    payload = file("${path.module}/db-creds.yml.encrypted") 
  }
}

The preceding code reads db-creds.yml.encrypted from disk using the file
helper function and, assuming you have permissions to access the
corresponding key in KMS, decrypts the contents. That gives you back the
contents of the original db-creds.yml file, so the next step is to parse the
YAML as follows:

locals {
  db_creds = 
yamldecode(data.aws_kms_secrets.creds.plaintext["db"])
}



This code pulls out the database secrets from the aws_kms_secrets
data source, parses the YAML, and stores the results in a local variable
called db_creds. Finally, you can read the username and password from
db_creds and pass those credentials to the aws_db_instance
resource:

resource "aws_db_instance" "example" {
  identifier_prefix   = "terraform-up-and-running"
  engine              = "mysql"
  allocated_storage   = 10
  instance_class      = "db.t2.micro"
  skip_final_snapshot = true
  db_name             = var.db_name 
 
  # Pass the secrets to the resource
  username = local.db_creds.username
  password = local.db_creds.password
}

So now you have a way to store secrets in an encrypted file, which are safe
to check into version control, and you have a way to read those secrets back
out of the file in your Terraform code automatically.

One thing to note with this approach is that working with encrypted files is
awkward. To make a change, you have to locally decrypt the file with a
long aws kms decrypt command, make some edits, re-encrypt the file
with another long aws kms encrypt command, and the whole time, be
extremely careful to not accidentally check the plain-text data into version
control or leave it sitting behind forever on your computer. This is a tedious
and error-prone process.

One way to make this less awkward is to use an open source tool called
sops. When you run sops <FILE>, sops will automatically decrypt FILE
and open your default text editor with the plain-text contents. When you’re
done editing and exit the text editor, sops will automatically encrypt the
contents. This way, the encryption and decryption are mostly transparent,
with no need to run long aws kms commands and less chance of
accidentally checking plain-text secrets into version control. As of 2022,
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sops can work with files encrypted via AWS KMS, GCP KMS, Azure Key
Vault, or PGP keys. Note that Terraform doesn’t yet have native support for
decrypting files that were encrypted by sops, so you’ll either need to use a
third-party provider such as carlpett/sops or, if you’re a Terragrunt user, you
can use the built-in sops_decrypt_file function.

Using encrypted files has the following advantages:

Keep plain-text secrets out of your code and version control system.

Your secrets are stored in an encrypted format in version control, so
they are versioned, packaged, and tested with the rest of your code.
This helps reduce configuration errors, such as adding a new secret in
one environment (e.g., staging) but forgetting to add it in another
environment (e.g., production).

Retrieving secrets is easy, assuming the encryption format you’re
using is natively supported by Terraform or a third-party plugin.

It works with a variety of different encryption options: AWS KMS,
GCP KMS, PGP, etc.

Everything is defined in the code. There are no extra manual steps or
wrapper scripts required (although sops integration does require a
third-party plugin).

Using encrypted files has the following drawbacks:

Storing secrets is harder. You either have to run lots of commands
(e.g., aws kms encrypt) or use an external tool such as sops.
There’s a learning curve to using these tools correctly and securely.

Integrating with automated tests is harder, as you will need to do extra
work to make encryption keys and encrypted test data available for
your test environments.

The secrets are now encrypted, but as they are still stored in version
control, rotating and revoking secrets is hard. If anyone ever

https://oreil.ly/A1X5p
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compromises the encryption key, they can go back and decrypt all the
secrets that were ever encrypted with it.

The ability to audit who accessed secrets is minimal. If you’re using a
cloud key management service (e.g., AWS KMS), it will likely
maintain an audit log of who used an encryption key, but you won’t be
able to tell what the key was actually used for (i.e., what secrets were
accessed).

Most managed key services cost a small amount of money. For
example, each key you store in AWS KMS costs $1/month, plus $0.03
per 10,000 API calls, where each decryption and encryption operation
requires one API call. A typical usage pattern, where you have a small
number of keys in KMS and your apps use those keys to decrypt
secrets during boot, usually costs $1–$10/month. For larger
deployments, where you have dozens of apps and hundreds of secrets,
the price is typically in the $10–$50/month range.

Standardizing secret management practices is harder. Different
developers or teams may use different ways to store encryption keys or
manage encrypted files, and mistakes are relatively common, such as
not using encryption correctly or accidentally checking in a plain-text
file into version control.

Secret stores
The third technique relies on storing your secrets in a centralized secret
store.

Some of the more popular secret stores are AWS Secrets Manager, Google
Secret Manager, Azure Key Vault, and HashiCorp Vault. Let’s look at an
example using AWS Secrets Manager. The first step is to store your
database credentials in AWS Secrets Manager, which you can do using the
AWS Web Console, as shown in Figure 6-2.



Figure 6-2. Store secrets in JSON format in AWS Secrets Manager.



Note that the secrets in Figure 6-2 are in a JSON format, which is the
recommended format for storing data in AWS Secrets Manager.

Go to the next step, and make sure to give the secret a unique name, such as
db-creds, as shown in Figure 6-3.



Figure 6-3. Give the secret a unique name in AWS Secrets Manager.



Click Next and Store to save the secret. Now, in your Terraform code, you
can use the aws_secretsmanager_secret_version data source to
read the db-creds secret:

data "aws_secretsmanager_secret_version" "creds" {
  secret_id = "db-creds"
}

Since the secret is stored as JSON, you can use the jsondecode function
to parse the JSON into the local variable db_creds:

locals {
  db_creds = jsondecode( 
    data.aws_secretsmanager_secret_version.creds.secret_string 
  )
}

And now you can read the database credentials from db_creds and pass
them into the aws_db_instance resource:

resource "aws_db_instance" "example" {
  identifier_prefix   = "terraform-up-and-running"
  engine              = "mysql"
  allocated_storage   = 10
  instance_class      = "db.t2.micro"
  skip_final_snapshot = true
  db_name             = var.db_name 
 
  # Pass the secrets to the resource
  username = local.db_creds.username
  password = local.db_creds.password
}

Using secret stores has the following advantages:

Keep plain-text secrets out of your code and version control system.

Everything is defined in the code itself. There are no extra manual
steps or wrapper scripts required.

Storing secrets is easy, as you typically can use a web UI.



Secret stores typically support rotating and revoking secrets, which is
useful in case a secret gets compromised. You can even enable rotation
on a scheduled basis (e.g., every 30 days) as a preventative measure.

Secret stores typically support detailed audit logs that show you
exactly who accessed what data.

Secret stores make it easier to standardize all your secret practices, as
they enforce specific types of encryption, storage, access patterns, etc.

Using secret stores has the following drawbacks:

Since the secrets are not versioned, packaged, and tested with your
code, configuration errors are more likely, such as adding a new secret
in one environment (e.g., staging) but forgetting to add it in another
environment (e.g., production).

Most managed secret stores cost money. For example, AWS Secrets
Manager charges $0.40 per month for each secret you store, plus $0.05
for every 10,000 API calls you make to store or retrieve data. A typical
usage pattern, where you have several dozen secrets stored across
several environments and a handful of apps that read those secrets
during boot, usually costs around $10–$25/month. With larger
deployments, where you have dozens of apps reading hundreds of
secrets, the price can go up to hundreds of dollars per month.

If you’re using a self-managed secret store such as HashiCorp Vault,
then you’re both spending money to run the store (e.g., paying AWS
for 3–5 EC2 Instances to run Vault in a highly available mode) and
spending time and money to have your developers deploy, configure,
manage, update, and monitor the store. Developer time is very
expensive, so depending on how much time they have to spend on
setting up and managing the secret store, this could cost you thousands
of dollars per month.

Retrieving secrets is harder, especially in automated environments
(e.g., an app booting up and trying to read a database password), as



you have to solve how to do secure authentication between multiple
machines.

Integrating with automated tests is harder, as much of the code you’re
testing now depends on a running, external system that either needs to
be mocked out or have test data stored in it.

State Files and Plan Files
There are two more places where you’ll come across secrets when using
Terraform:

State files

Plan files

State files
Hopefully, this chapter has convinced you to not store your secrets in plain
text and provided you with some better alternatives. However, something
that catches many Terraform users off guard is that, no matter which
technique you use, any secrets you pass into your Terraform resources and
data sources will end up in plain text in your Terraform state file!

For example, no matter where you read the database credentials from—
environment variables, encrypted files, a centralized secret store—if you
pass those credentials to a resource such as aws_db_instance:

resource "aws_db_instance" "example" {
  identifier_prefix   = "terraform-up-and-running"
  engine              = "mysql"
  allocated_storage   = 10
  instance_class      = "db.t2.micro"
  skip_final_snapshot = true
  db_name             = var.db_name 
 
  # Pass the secrets to the resource
  username = local.db_creds.username
  password = local.db_creds.password
}



then Terraform will store those credentials in your terraform.tfstate file, in
plain text. This has been an open issue since 2014, with no clear plans for a
first-class solution. There are some workarounds out there that can scrub
secrets from your state files, but these are brittle and likely to break with
each new Terraform release, so I don’t recommend them.

For the time being, no matter which of the techniques discussed you end up
using to manage secrets, you must do the following:

Store Terraform state in a backend that supports encryption

Instead of storing your state in a local terraform.tfstate file and
checking it into version control, you should use one of the backends
Terraform supports that natively supports encryption, such as S3, GCS,
and Azure Blob Storage. These backends will encrypt your state files,
both in transit (e.g., via TLS) and on disk (e.g., via AES-256).

Strictly control who can access your Terraform backend

Since Terraform state files may contain secrets, you’ll want to control
who has access to your backend with at least as much care as you
control access to the secrets themselves. For example, if you’re using S3
as a backend, you’ll want to configure an IAM Policy that solely grants
access to the S3 bucket for production to a small handful of trusted
devs, or perhaps solely just the CI server you use to deploy to prod.

Plan files
You’ve seen the terraform plan command many times. One feature
you may not have seen yet is that you can store the output of the plan
command (the “diff”) in a file:

$ terraform plan -out=example.plan

The preceding command stores the plan in a file called example.plan. You
can then run the apply command on this saved plan file to ensure that
Terraform applies exactly the changes you saw originally:

https://bit.ly/33gqaVe


$ terraform apply example.plan

This is a handy feature of Terraform, but an important caveat applies: just as
with Terraform state, any secrets you pass into your Terraform resources
and data sources will end up in plain text in your Terraform plan files! For
example, if you ran plan on the aws_db_instance code, and saved a
plan file, the plan file would contain the database username and password,
in plain text.

Therefore, if you’re going to use plan files, you must do the following:

Encrypt your Terraform plan files

If you’re going to save your plan files, you’ll need to find a way to
encrypt those files, both in transit (e.g., via TLS) and on disk (e.g., via
AES-256). For example, you could store plan files in an S3 bucket,
which supports both types of encryption.

Strictly control who can access your plan files

Since Terraform plan files may contain secrets, you’ll want to control
who has access to them with at least as much care as you control access
to the secrets themselves. For example, if you’re using S3 to store your
plan files, you’ll want to configure an IAM Policy that solely grants
access to the S3 bucket for production to a small handful of trusted
devs, or perhaps solely just the CI server you use to deploy to prod.

Conclusion
Here are your key takeaways from this chapter. First, if you remember
nothing else from this chapter, please remember this: you should not store
secrets in plain text.

Second, to pass secrets to providers, human users can use personal secrets
managers and set environment variables, and machine users can use stored
credentials, IAM roles, or OIDC. See Table 6-2 for the trade-offs between
the machine user options.



Table 6-2. A comparison of methods for machine users (e.g., a CI server) to
pass secrets to Terraform providers

Stored
credentials IAM roles OIDC

Example CircleCI Jenkins on an EC2
Instance

GitHub Actions

Avoid manually managing
credentials

x ✓ ✓

Avoid using permanent
credentials

x ✓ ✓

Works inside of cloud provider x ✓ x

Works outside of cloud
provider

✓ x ✓

Widely supported as of 2022 ✓ ✓ x

Third, to pass secrets to resources and data sources, use environment
variables, encrypted files, or centralized secret stores. See Table 6-3 for the
trade-offs between these different options.



Table 6-3. A comparison of methods for passing secrets to Terraform
resources and data sources

Environment
variables Encrypted files

Centralized
secret stores

Keeps plain-text secrets out of
code

✓ ✓ ✓

All secrets management defined
as code

x ✓ ✓

Audit log for access to encryption
keys

x ✓ ✓

Audit log for access to individual
secrets

x x ✓

Rotating or revoking secrets is
easy

x x ✓

Standardizing secrets
management is easy

x x ✓

Secrets are versioned with the
code

x ✓ x

Storing secrets is easy ✓ x ✓

Retrieving secrets is easy ✓ ✓ x

Integrating with automated
testing is easy

✓ x x

Cost 0 $ $$$

And finally, fourth, no matter how you pass secrets to resources and data
stores, remember that Terraform will store those secrets in your state files
and plan files, in plain text, so make sure to always encrypt those files (in
transit and at rest) and to strictly control access to them.

Now that you understand how to manage secrets when working with
Terraform, including how to securely pass secrets to Terraform providers,



let’s move on to Chapter 7, where you’ll learn how to use Terraform in
cases where you have multiple providers (e.g., multiple regions, multiple
accounts, multiple clouds).

1  Note that in most Linux/Unix/macOS shells, every command you type is stored on disk in
some sort of history file (e.g., ~/.bash_history). That’s why the export commands shown
here have a leading space: if you start your command with a space, most shells will skip
writing that command to the history file. Note that you might need to set the HISTCONTROL
environment variable to “ignoreboth” to enable this if your shell doesn’t enable it by default.

2  By default, the instance metadata endpoint is open to all OS users running on your EC2
Instances. I recommend locking this endpoint down so that only specific OS users can access
it: e.g., if you’re running an app on the EC2 Instance as user app, you could use iptables or
nftables to only allow app to access the instance metadata endpoint. That way, if an
attacker finds some vulnerability and is able to execute code on your instance, they will only
be able to access the IAM role permissions if they are able to authenticate as user app (rather
than as any user). Better still, if you only need the IAM role permissions during boot (e.g., to
read a database password), you could disable the instance metadata endpoint entirely after
boot, so an attacker who gets access later can’t use the endpoint at all.

3  At the time this book was written, OIDC support between GitHub Actions and AWS was
fairly new and the details subject to change. Make sure to check the latest GitHub OIDC
documentation for the latest updates.
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Chapter 7. Working with
Multiple Providers

So far, almost every single example in this book has included just a single
provider block:

provider "aws" {
  region = "us-east-2"
}

This provider block configures your code to deploy to a single AWS
region in a single AWS account. This raises a few questions:

What if you need to deploy to multiple AWS regions?

What if you need to deploy to multiple AWS accounts?

What if you need to deploy to other clouds, such as Azure or GCP?

To answer these questions, this chapter takes a deeper look at Terraform
providers:

Working with one provider

Working with multiple copies of the same provider

Working with multiple different providers

Working with One Provider
So far, you’ve been using providers somewhat “magically.” That works
well enough for simple examples with one basic provider, but if you want to
work with multiple regions, accounts, clouds, etc., you’ll need to go deeper.



Let’s start by taking a closer look at a single provider to better understand
how it works:

What is a provider?

How do you install providers?

How do you use providers?

What Is a Provider?
When I first introduced providers in Chapter 2, I described them as the
platforms Terraform works with: e.g., AWS, Azure, Google Cloud,
DigitalOcean, etc. So how does Terraform interact with these platforms?

Under the hood, Terraform consists of two parts:

Core

This is the terraform binary, and it provides all the basic
functionality in Terraform that is used by all platforms, such as a
command-line interface (i.e., plan, apply, etc.), a parser and
interpreter for Terraform code (HCL), the ability to build a dependency
graph from resources and data sources, logic to read and write state
files, and so on. Under the hood, the code is written in Go and lives in
an open source GitHub repo owned and maintained by HashiCorp.

Providers

Terraform providers are plugins for the Terraform core. Each plugin is
written in Go to implement a specific interface, and the Terraform core
knows how to install and execute the plugin. Each of these plugins is
designed to work with some platform in the outside world, such as
AWS, Azure, or Google Cloud. The Terraform core communicates with
plugins via remote procedure calls (RPCs), and those plugins, in turn,
communicate with their corresponding platforms via the network (e.g.,
via HTTP calls), as shown in Figure 7-1.
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The code for each plugin typically lives in its own repo. For example,
all the AWS functionality you’ve been using in the book so far comes
from a plugin called the Terraform AWS Provider (or just AWS
Provider for short) that lives in its own repo. Although HashiCorp
created most of the initial providers, and still helps to maintain many of
them, these days, much of the work for each provider is done by the
company that owns the underlying platform: e.g., AWS employees work
on the AWS Provider, Microsoft employees work on the Azure
provider, Google employees work on the Google Cloud provider, and so
on.

Figure 7-1. The interaction between the Terraform core, providers, and the outside world.
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Each provider claims a specific prefix and exposes one or more
resources and data sources whose names include that prefix: e.g., all the
resources and data sources from the AWS Provider use the aws_ prefix
(e.g., aws_instance, aws_autoscaling_group, aws_ami),
all the resources and data sources from the Azure provider use the
azurerm_ prefix (e.g., azurerm_virtual_machine,
azurerm_virtual_machine_scale_set, azurerm_image),
and so on.

How Do You Install Providers?
For official Terraform providers, such as the ones for AWS, Azure, and
Google Cloud, it’s enough to just add a provider block to your code:

provider "aws" {
  region = "us-east-2"
}

As soon as you run terraform init, Terraform automatically
downloads the code for the provider:

$ terraform init 
 
Initializing provider plugins... 
- Finding hashicorp/aws versions matching "4.19.0"... 
- Installing hashicorp/aws v4.19.0... 
- Installed hashicorp/aws v4.19.0 (signed by HashiCorp)

This is a bit magical, isn’t it? How does Terraform know what provider you
want? Or which version you want? Or where to download it from?
Although it’s OK to rely on this sort of magic for learning and
experimenting, when writing production code, you’ll probably want a bit
more control over how Terraform installs providers. Do this by adding a
required_providers block, which has the following syntax:

terraform { 
  required_providers {

1



    <LOCAL_NAME> = {
      source  = "<URL>"
      version = "<VERSION>" 
    } 
  }
}

where:

LOCAL_NAME

This is the local name to use for the provider in this module. You must
give each provider a unique name, and you use that name in the
provider block configuration. In almost all cases, you’ll use the
preferred local name of that provider: e.g., for the AWS Provider, the
preferred local name is aws, which is why you write the provider block
as provider "aws" { … }. However, in rare cases, you may end
up with two providers that have the same preferred local name—e.g.,
two providers that both deal with HTTP requests and have a preferred
local name of http—so you can use this local name to disambiguate
between them.

URL

This is the URL from where Terraform should download the provider,
in the format [<HOSTNAME>/]<NAMESPACE>/<TYPE>, where
HOSTNAME is the hostname of a Terraform Registry that distributes the
provider, NAMESPACE is the organizational namespace (typically, a
company name), and TYPE is the name of the platform this provider
manages (typically, TYPE is the preferred local name). For example, the
full URL for the AWS Provider, which is hosted in the public Terraform
Registry, is registry.terraform.io/hashicorp/aws.
However, note that HOSTNAME is optional, and if you omit it,
Terraform will by default download the provider from the public
Terraform Registry, so the shorter and more common way to specify the
exact same AWS Provider URL is hashicorp/aws. You typically
only include HOSTNAME for custom providers that you’re downloading

https://registry.terraform.io/


from private Terraform Registries (e.g., a private Registry you’re
running in Terraform Cloud or Terraform Enterprise).

VERSION

This is a version constraint. For example, you could set it to a specific
version, such as 4.19.0, or to a version range, such as > 4.0, <
4.3. You’ll learn more about how to handle versioning in Chapter 8.

For example, to install version 4.x of the AWS Provider, you can use the
following code:

terraform { 
  required_providers {
    aws = {
      source  = "hashicorp/aws"
      version = "~> 4.0" 
    } 
  }
}

So now you can finally understand the magical provider installation
behavior you saw earlier. If you add a new provider block named foo
to your code, and you don’t specify a required_providers block,
when you run terraform init, Terraform will automatically do the
following:

Try to download provider foo with the assumption that the
HOSTNAME is the public Terraform Registry and that the NAMESPACE
is hashicorp, so the download URL is
registry.terraform.io/hashicorp/foo.

If that’s a valid URL, install the latest version of the foo provider
available at that URL.

If you want to install any provider not in the hashicorp namespace (e.g.,
if you want to use providers from Datadog, Cloudflare, or Confluent, or a
custom provider you built yourself), or you want to control the version of



the provider you use, you will need to include a required_providers
block.

ALWAYS INCLUDE REQUIRED_PROVIDERS
As you’ll learn in Chapter 8, it’s important to control the version of the provider you
use, so I recommend always including a required_providers block in your code.

How Do You Use Providers?
With this new knowledge about providers, let’s revisit how to use them. The
first step is to add a required_providers block to your code to
specify which provider you want to use:

terraform { 
  required_providers {
    aws = {
      source  = "hashicorp/aws"
      version = "~> 4.0" 
    } 
  }
}

Next, you add a provider block to configure that provider:

provider "aws" {
  region = "us-east-2"
}

So far, you’ve only been configuring the region to use in the AWS
Provider, but there are many other settings you can configure. Always
check your provider’s documentation for the details: typically, this
documentation lives in the same Registry you use to download the provider
(the one in the source URL). For example, the documentation for the
AWS Provider is in the public Terraform Registry. This documentation will
typically explain how to configure the provider to work with different users,
roles, regions, accounts, and so on.

https://oreil.ly/Z8ymG


Once you’ve configured a provider, all the resources and data sources from
that provider (all the ones with the same prefix) that you put into your code
will automatically use that configuration. So, for example, when you set the
region in the aws provider to us-east-2, all the aws_ resources to your
code will automatically deploy into us-east-2.

But what if you want some of those resources to deploy into us-east-2
and some into a different region, such as us-west-1? Or what if you
want to deploy some resources to a completely different AWS account? To
do that, you’ll have to learn how to configure multiple copies of the same
provider, as discussed in the next section.

Working with Multiple Copies of the Same
Provider
To understand how to work with multiple copies of the same provider, let’s
look at a few of the common cases where this comes up:

Working with multiple AWS regions

Working with multiple AWS accounts

Creating modules that can work with multiple providers

Working with Multiple AWS Regions
Most cloud providers allow you to deploy into datacenters (“regions”) all
over the world, but when you configure a Terraform provider, you typically
configure it to deploy into just one of those regions. For example, so far
you’ve been deploying into just a single AWS region, us-east-2:

provider "aws" {
  region = "us-east-2"
}



What if you wanted to deploy into multiple regions? For example, how
could you deploy some resources into us-east-2 and other resources
into us-west-1? You might be tempted to solve this by defining two
provider configurations, one for each region:

provider "aws" {
  region = "us-east-2"
} 
 
provider "aws" {
  region = "us-west-1"
}

But now there’s a new problem: How do you specify which of these
provider configurations each of your resources, data sources, and
modules should use? Let’s look at data sources first. Imagine you had two
copies of the aws_region data source, which returns the current AWS
region:

data "aws_region" "region_1" {
} 
 
data "aws_region" "region_2" {
}

How do you get the region_1 data source to use the us-east-2
provider and the region_2 data source to use the us-west-1 provider?
The solution is to add an alias to each provider:

provider "aws" {
  region = "us-east-2"
  alias  = "region_1"
} 
 
provider "aws" {
  region = "us-west-1"
  alias  = "region_2"
}



An alias is a custom name for the provider, which you can explicitly
pass to individual resources, data sources, and modules to get them to use
the configuration in that particular provider. To tell those aws_region
data sources to use a specific provider, you set the provider parameter as
follows:

data "aws_region" "region_1" {
  provider = aws.region_1
} 
 
data "aws_region" "region_2" {
  provider = aws.region_2
}

Add some output variables so you can check that this is working:

output "region_1" {
  value       = data.aws_region.region_1.name
  description = "The name of the first region"
} 
 
output "region_2" {
  value       = data.aws_region.region_2.name
  description = "The name of the second region"
}

And run apply:

$ terraform apply 
 
(...) 
 
Outputs: 
 
region_1 = "us-east-2" 
region_2 = "us-west-1"

And there you go: each of the aws_region data sources is now using a
different provider and, therefore, running against a different AWS region.
The same technique of setting the provider parameter works with



resources too. For example, here’s how you can deploy two EC2 Instances
in different regions:

resource "aws_instance" "region_1" {
  provider = aws.region_1 
 
  # Note different AMI IDs!!
  ami           = "ami-0fb653ca2d3203ac1"
  instance_type = "t2.micro"
} 
 
resource "aws_instance" "region_2" {
  provider = aws.region_2 
 
  # Note different AMI IDs!!
  ami           = "ami-01f87c43e618bf8f0"
  instance_type = "t2.micro"
}

Notice how each aws_instance resource sets the provider parameter
to ensure it deploys into the proper region. Also, note that the ami
parameter has to be different on the two aws_instance resources: that’s
because AMI IDs are unique to each AWS region, so the ID for Ubuntu
20.04 in us-east-2 is different than for Ubuntu 20.04 in us-west-1.
Having to look up and manage these AMI IDs manually is tedious and error
prone. Fortunately, there’s a better alternative: use the aws_ami data
source that, given a set of filters, can find AMI IDs for you automatically.
Here’s how you can use this data source twice, once in each region, to look
up Ubuntu 20.04 AMI IDs:

data "aws_ami" "ubuntu_region_1" {
  provider = aws.region_1 
 
  most_recent = true
  owners      = ["099720109477"] # Canonical 
 
  filter {
    name   = "name"
    values = ["ubuntu/images/hvm-ssd/ubuntu-focal-20.04-amd64-
server-*"] 
  }



} 
 
data "aws_ami" "ubuntu_region_2" {
  provider = aws.region_2 
 
  most_recent = true
  owners      = ["099720109477"] # Canonical 
 
  filter {
    name   = "name"
    values = ["ubuntu/images/hvm-ssd/ubuntu-focal-20.04-amd64-
server-*"] 
  }
}

Notice how each data source sets the provider parameter to ensure it’s
looking up the AMI ID in the proper region. Go back to the
aws_instance code and update the ami parameter to use the output of
these data sources instead of the hardcoded values:

resource "aws_instance" "region_1" {
  provider = aws.region_1 
 
  ami           = data.aws_ami.ubuntu_region_1.id
  instance_type = "t2.micro"
} 
 
resource "aws_instance" "region_2" {
  provider = aws.region_2 
 
  ami           = data.aws_ami.ubuntu_region_2.id
  instance_type = "t2.micro"
}

Much better. Now, no matter what region you deploy into, you’ll
automatically get the proper AMI ID for Ubuntu. To check that these EC2
Instances are really deploying into different regions, add output variables
that show you which availability zone (each of which is in one region) each
instance was actually deployed into:

output "instance_region_1_az" {
  value       = aws_instance.region_1.availability_zone



  description = "The AZ where the instance in the first region 
deployed"
} 
 
output "instance_region_2_az" {
  value       = aws_instance.region_2.availability_zone
  description = "The AZ where the instance in the second region 
deployed"
}

And now run apply:

$ terraform apply 
 
(...) 
 
Outputs: 
 
instance_region_1_az = "us-east-2a" 
instance_region_2_az = "us-west-1b"

OK, so now you know how to deploy data sources and resources into
different regions. What about modules? For example, in Chapter 3, you
used Amazon RDS to deploy a single instance of a MySQL database in the
staging environment (stage/data-stores/mysql):

provider "aws" {
  region = "us-east-2"
} 
 
resource "aws_db_instance" "example" {
  identifier_prefix   = "terraform-up-and-running"
  engine              = "mysql"
  allocated_storage   = 10
  instance_class      = "db.t2.micro"
  skip_final_snapshot = true 
 
  username = var.db_username
  password = var.db_password
}

This is fine in staging, but in production, a single database is a single point
of failure. Fortunately, Amazon RDS natively supports replication, where



your data is automatically copied from a primary database to a secondary
database—a read-only replica—which is useful for scalability and as a
standby in case the primary goes down. You can even run the replica in a
totally different AWS region, so if one region goes down (e.g., there’s a
major outage in us-east-2), you can switch to the other region (e.g.,
us-west-1).

Let’s turn that MySQL code in the staging environment into a reusable
mysql module that supports replication. First, copy all the contents of
stage/data-stores/mysql, which should include main.tf, variables.tf, and
outputs.tf, into a new modules/data-stores/mysql folder. Next, open
modules/data-stores/mysql/variables.tf and expose two new variables:

variable "backup_retention_period" {
  description = "Days to retain backups. Must be > 0 to enable 
replication."
  type        = number
  default     = null
} 
 
variable "replicate_source_db" {
  description = "If specified, replicate the RDS database at the 
given ARN."
  type        = string
  default     = null
}

As you’ll see shortly, you’ll set the backup_retention_period
variable on the primary database to enable replication, and you’ll set the
replicate_source_db variable on the secondary database to turn it
into a replica. Open up modules/data-stores/mysql/main.tf, and update the
aws_db_instance resource as follows:

1. Pass the backup_retention_period and
replicate_source_db variables into parameters of the same
name in the aws_db_instance resource.

2. If a database instance is a replica, AWS does not allow you to set the
engine, db_name, username, or password parameters, as those



are all inherited from the primary. So you must add some conditional
logic to the aws_db_instance resource to not set those parameters
when the replicate_source_db variable is set.

Here’s what the resource should look like after the changes:

resource "aws_db_instance" "example" {
  identifier_prefix   = "terraform-up-and-running"
  allocated_storage   = 10
  instance_class      = "db.t2.micro"
  skip_final_snapshot = true 
 
  # Enable backups
  backup_retention_period = var.backup_retention_period 
 
  # If specified, this DB will be a replica
  replicate_source_db = var.replicate_source_db 
 
  # Only set these params if replicate_source_db is not set
  engine   = var.replicate_source_db == null ? "mysql" : null
  db_name  = var.replicate_source_db == null ? var.db_name : null
  username = var.replicate_source_db == null ? var.db_username : 
null
  password = var.replicate_source_db == null ? var.db_password : 
null
}

Note that for replicas, this implies that the db_name, db_username, and
db_password input variables in this module should be optional, so it’s a
good idea to go back to modules/data-stores/mysql/variables.tf and set the
default for those variables to null:

variable "db_name" {
  description = "Name for the DB."
  type        = string
  default     = null
} 
 
variable "db_username" {
  description = "Username for the DB."
  type        = string
  sensitive   = true
  default     = null



} 
 
variable "db_password" {
  description = "Password for the DB."
  type        = string
  sensitive   = true
  default     = null
}

To use the replicate_source_db variable, you’ll need set it to the
ARN of another RDS database, so you should also update modules/data-
stores/mysql/outputs.tf to add the database ARN as an output variable:

output "arn" {
  value       = aws_db_instance.example.arn
  description = "The ARN of the database"
}

One more thing: you should add a required_providers block to this
module to specify that this module expects to use the AWS Provider, and to
specify which version of the provider the module expects.

terraform { 
  required_providers {
    aws = {
      source  = "hashicorp/aws"
      version = "~> 4.0" 
    } 
  }
}

You’ll see in a moment why this is important when working with multiple
regions, too!

OK, you can now use this mysql module to deploy a MySQL primary and
a MySQL replica in the production environment. First, create
live/prod/data-stores/mysql/variables.tf to expose input variables for the
database username and password (so you can pass these secrets in as
environment variables, as discussed in Chapter 6):



variable "db_username" {
  description = "The username for the database"
  type        = string
  sensitive   = true
} 
 
variable "db_password" {
  description = "The password for the database"
  type        = string
  sensitive   = true
}

Next, create live/prod/data-stores/mysql/main.tf, and use the mysql
module to configure the primary as follows:

module "mysql_primary" {
  source = "../../../../modules/data-stores/mysql" 
 
  db_name     = "prod_db"
  db_username = var.db_username
  db_password = var.db_password 
 
  # Must be enabled to support replication
  backup_retention_period = 1
}

Now, add a second usage of the mysql module to create a replica:

module "mysql_replica" {
  source = "../../../../modules/data-stores/mysql" 
 
  # Make this a replica of the primary
  replicate_source_db = module.mysql_primary.arn
}

Nice and short! All you’re doing is passing the ARN of the primary
database into the replicate_source_db parameter, which should spin
up an RDS database as a replica.

There’s just one problem: How do you tell the code to deploy the primary
and replica into different regions? To do so, create two provider blocks,
each with its own alias:



provider "aws" {
  region = "us-east-2"
  alias  = "primary"
} 
 
provider "aws" {
  region = "us-west-1"
  alias  = "replica"
}

To tell a module which providers to use, you set the providers
parameter. Here’s how you configure the MySQL primary to use the
primary provider (the one in us-east-2):

module "mysql_primary" {
  source = "../../../../modules/data-stores/mysql" 
 
  providers = {
    aws = aws.primary 
  } 
 
  db_name     = "prod_db"
  db_username = var.db_username
  db_password = var.db_password 
 
  # Must be enabled to support replication
  backup_retention_period = 1
}

And here is how you configure the MySQL replica to use the replica
provider (the one in us-west-1):

module "mysql_replica" {
  source = "../../../../modules/data-stores/mysql" 
 
  providers = {
    aws = aws.replica 
  } 
 
  # Make this a replica of the primary
  replicate_source_db = module.mysql_primary.arn
}



Notice that with modules, the providers (plural) parameter is a map,
whereas with resources and data sources, the provider (singular)
parameter is a single value. That’s because each resource and data source
deploys into exactly one provider, but a module may contain multiple data
sources and resources and use multiple providers (you’ll see an example of
multiple providers in a module later). In the providers map you pass to
a module, the key must match the local name of the provider in the
required_providers map within the module (in this case, both are set
to aws). This is yet another reason defining required_providers
explicitly is a good idea in just about every module.

Alright, the last step is to create live/prod/data-stores/mysql/outputs.tf with
the following output variables:

output "primary_address" {
  value       = module.mysql_primary.address
  description = "Connect to the primary database at this 
endpoint"
} 
 
output "primary_port" {
  value       = module.mysql_primary.port
  description = "The port the primary database is listening on"
} 
 
output "primary_arn" {
  value       = module.mysql_primary.arn
  description = "The ARN of the primary database"
} 
 
output "replica_address" {
  value       = module.mysql_replica.address
  description = "Connect to the replica database at this 
endpoint"
} 
 
output "replica_port" {
  value       = module.mysql_replica.port
  description = "The port the replica database is listening on"
} 
 
output "replica_arn" {
  value       = module.mysql_replica.arn



  description = "The ARN of the replica database"
}

And now you’re finally ready to deploy! Note that running apply to spin
up a primary and replica can take a long time, some 20–30 minutes, so be
patient:

$ terraform apply 
 
(...) 
 
Apply complete! Resources: 2 added, 0 changed, 0 destroyed. 
 
Outputs: 
primary_address = "terraform-up-and-running.cmyd6qwb.us-east-
2.rds.amazonaws.com" 
primary_arn     = "arn:aws:rds:us-east-
2:111111111111:db:terraform-up-and-running" 
primary_port    = 3306 
replica_address = "terraform-up-and-running.drctpdoe.us-west-
1.rds.amazonaws.com" 
replica_arn     = "arn:aws:rds:us-west-
1:111111111111:db:terraform-up-and-running" 
replica_port    = 3306

And there you have it, cross-region replication! You can log into the RDS
Console to confirm replication is working. As shown in Figure 7-2, you
should see a primary in us-east-2 and a replica in us-west-1.

https://oreil.ly/XC4Q8




Figure 7-2. The RDS console shows a primary database in us-east-2 and a replica in us-
west-1.

As an exercise for the reader, I leave it up to you to update the staging
environment (stage/data-stores/mysql) to use your mysql module
(modules/data-stores/mysql) as well, but to configure it without replication,
as you don’t usually need that level of availability in pre-production
environments.

As you can see in these examples, by using multiple providers with aliases,
deploying resources across multiple regions with Terraform is pretty easy.
However, I want to give two warnings before moving on:

Warning 1: Multiregion is hard

To run infrastructure in multiple regions around the world, especially in
“active-active” mode, where more than one region is actively
responding to user requests at the same time (as opposed to one region
being a standby), there are many hard problems to solve, such as
dealing with latency between regions, deciding between one writer
(which means you have lower availability and higher latency) or
multiple writers (which means you have either eventual consistency or
sharding), figuring out how to generate unique IDs (the standard auto
increment ID in most databases no longer suffices), working to meet
local data regulations, and so on. These challenges are all beyond the
scope of the book, but I figured I’d at least mention them to make it
clear that multiregion deployments in the real world are not just a matter
of tossing a few provider aliases into your Terraform code!

Warning 2: Use aliases sparingly

Although it’s easy to use aliases with Terraform, I would caution against
using them too often, especially when setting up multiregion
infrastructure. One of the main reasons to set up multiregion
infrastructure is so you can be resilient to the outage of one region: e.g.,
if us-east-2 goes down, your infrastructure in us-west-1 can
keep running. But if you use a single Terraform module that uses aliases



to deploy into both regions, then when one of those regions is down, the
module will not be able to connect to that region, and any attempt to run
plan or apply will fail. So right when you need to roll out changes—
when there’s a major outage—your Terraform code will stop working.

More generally, as discussed in Chapter 3, you should keep
environments completely isolated: so instead of managing multiple
regions in one module with aliases, you manage each region in separate
modules. That way, you minimize the blast radius, both from your own
mistakes (e.g., if you accidentally break something in one region, it’s
less likely to affect the other) and from problems in the world itself
(e.g., an outage in one region is less likely to affect the other).

So when does it make sense to use aliases? Typically, aliases are a good fit
when the infrastructure you’re deploying across several aliased providers is
truly coupled and you want to always deploy it together. For example, if
you wanted to use Amazon CloudFront as a CDN (Content Distribution
Network), and to provision a TLS certificate for it using AWS Certification
Manager (ACM), then AWS requires the certificate to be created in the us-
east-1 region, no matter what other regions you happen to be using for
CloudFront itself. In that case, your code may have two provider blocks,
one for the primary region you want to use for CloudFront and one with an
alias hardcoded specifically to us-east-1 for configuring the TLS
certificate. Another use case for aliases is if you’re deploying resources
designed for use across many regions: for example, AWS recommends
deploying GuardDuty, an automated threat detection service, in every single
region you’re using in your AWS account. In this case, it may make sense
to have a module with a provider block and custom alias for each
AWS region.

Beyond a few corner cases like this, using aliases to handle multiple regions
is relatively rare. A more common use case for aliases is when you have
multiple providers that need to authenticate in different ways, such as each
one authenticating to a different AWS account.



Working with Multiple AWS Accounts
So far, throughout this book, you’ve likely been using a single AWS
account for all of your infrastructure. For production code, it’s more
common to use multiple AWS accounts: e.g., you put your staging
environment in a stage account, your production environment in a prod
account, and so on. This concept applies to other clouds too, such as Azure
and Google Cloud. Note that I’ll be using the term account in this book,
even though some clouds use slightly different terminology for the same
concept (e.g., Google Cloud calls them projects instead of accounts).

The main reasons for using multiple accounts are as follows:

Isolation (aka compartmentalization)

You use separate accounts to isolate different environments from each
other and to limit the “blast radius” when things go wrong. For
example, putting your staging and production environments in separate
accounts ensures that if an attacker manages to break into staging, they
still have no access whatsoever to production. Likewise, this isolation
ensures that a developer making changes in staging is less likely to
accidentally break something in production.

Authentication and authorization

If everything is in one account, it’s tricky to grant access to some things
(e.g., the staging environment) but not accidentally grant access to other
things (e.g., the production environment). Using multiple accounts
makes it easier to have fine-grained control, as any permissions you
grant in one account have no effect on any other account.

The authentication requirements of multiple accounts also help reduce
the chance of mistakes. With everything in a single account, it’s too
easy to make the mistake where you think you’re making a change in,
say, your staging environment, but you’re actually making the change in
production (which can be a disaster if the change you’re making is, for
example, to drop all database tables). With multiple accounts, this is less
likely, as authenticating to each account requires a separate set of steps.



Note that having multiple accounts does not imply that developers have
multiple separate user profiles (e.g., a separate IAM user in each AWS
account). In fact, that would be an antipattern, as that would require
managing multiple sets of credentials, permissions, etc. Instead, you can
configure just about all the major clouds so that each developer has
exactly one user profile, which they can use to authenticate to any
account they have access to. The cross-account authentication
mechanism varies depending on the cloud you’re using: e.g., in AWS,
you can authenticate across AWS accounts by assuming IAM roles, as
you’ll see shortly.

Auditing and reporting

A properly configured account structure will allow you to maintain an
audit trail of all the changes happening in all your environments, check
if you’re adhering to compliance requirements, and detect anomalies.
Moreover, you’ll be able to have consolidated billing, with all the
charges for all of your accounts in one place, including cost breakdowns
by account, service, tag, etc. This is especially useful in large
organizations, as it allows finance to track and budget spending by team
simply by looking at which account the charges are coming from.

Let’s go through a multi-account example with AWS. First, you’ll want to
create a new AWS account to use for testing. Since you already have one
AWS account, to create new child accounts, you can use AWS
Organizations, which ensures that the billing from all the child accounts
rolls up into the parent account (sometimes called the root account) and
gives you a dashboard you can use to manage all the child accounts.

Head over to the AWS Organizations Console, and click the “Add an AWS
account” button, as shown in Figure 7-3.
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Figure 7-3. Use AWS Organizations to create a new AWS account.

On the next page, fill in the following info, as shown in Figure 7-4:

AWS account name

The name to use for the account. For example, if this account was going
to be used for your staging environment, you might name it “staging.”

Email address of the account’s owner

The email address to use for the root user of the AWS account. Note
that every AWS account must use a different email address for the root
user, so you can’t reuse the email address you used to create your first
(root) AWS account (see “How to Get Multiple Aliases from One Email
Address” for a workaround). So what about the root user’s password?
By default, AWS does not configure a password for the root user of a
new child account (you’ll see shortly an alternative way to authenticate
to the child account). If you ever do want to log in as this root user, after
you create the child account, you’ll need to go through the password
reset flow with the email address you’re specifying here.

IAM role name

When AWS Organizations creates a child AWS account, it
automatically creates an IAM role within that child AWS account that
has admin permissions and can be assumed from the parent account.
This is convenient, as it allows you to authenticate to the child AWS
account without having to create any IAM users or IAM roles yourself.
I recommend leaving this IAM role name at the default value of
OrganizationAccountAccessRole.



Figure 7-4. Fill in the details for the new AWS account.



HOW TO GET MULTIPLE ALIASES FROM ONE EMAIL
ADDRESS

If you use Gmail, you can get multiple email aliases out of a single
address by taking advantage of the fact that Gmail ignores everything
after a plus sign in an email address. For example, if your Gmail
address is example@gmail.com, you can send email to
example+foo@gmail.com and example+any-text-you-
want@gmail.com, and all of those emails will go to
example@gmail.com. This also works if your company uses Gmail via
Google Workspace, even with a custom domain: e.g.,
example+dev@company.com and example+stage@company.com will
all go to example@company.com.

This is useful if you’re creating a dozen child AWS accounts, as instead
of having to create a dozen totally separate email addresses, you could
use example+dev@company.com for your dev account,
example+stage@company.com for your stage account, and so on; AWS
will see each of those email addresses as a different, unique address, but
under the hood, all the emails will go to the same account.

Click the Create AWS Account button, wait a few minutes for AWS to
create the account, and then jot down the 12-digit ID of the AWS account
that gets created. For the rest of this chapter, let’s assume the following:

Parent AWS account ID: 111111111111

Child AWS account ID: 222222222222

You can authenticate to your new child account from the AWS Console by
clicking your username and selecting “Switch role”, as shown in Figure 7-5.



Figure 7-5. Select the “Switch role” button.

Next, enter the details for the IAM role you want to assume, as shown in
Figure 7-6:

Account

The 12-digit ID of the AWS account to switch to. You’ll want to enter
the ID of your new child account.

Role



The name of the IAM role to assume in that AWS account. Enter the
name you used for the IAM role when creating the new child account,
which is OrganizationAccountAccessRole by default.

Display name

AWS will create a shortcut in the nav to allow you to switch to this
account in the future with a single click. This is the name to show in this
shortcut. It only affects your IAM user in this browser.

Figure 7-6. Enter the details for the role to switch to.



Click Switch Role and, voilà, AWS should log you into the web console of
the new AWS account!

Let’s now write an example Terraform module in examples/multi-account-
root that can authenticate to multiple AWS accounts. Just as with the
multiregion AWS example, you will need to add two provider blocks in
main.tf, each with a different alias. First, the provider block for the
parent AWS account:

provider "aws" {
  region = "us-east-2"
  alias  = "parent"
}

Next, the provider block for the child AWS account:

provider "aws" {
  region = "us-east-2"
  alias  = "child"
}

To be able to authenticate to the child AWS account, you’ll assume an IAM
role. In the web console, you did this by clicking the Switch Role button; in
your Terraform code, you do this by adding an assume_role block to the
child provider block:

provider "aws" {
  region = "us-east-2"
  alias  = "child" 
 
  assume_role {
    role_arn = "arn:aws:iam::<ACCOUNT_ID>:role/<ROLE_NAME>" 
  }
}

In the role_arn parameter, you’ll need to replace ACCOUNT_ID with
your child account ID and ROLE_NAME with the name of the IAM role in
that account, just as you did when switching roles in the web console.



Here’s what it looks like with the account ID 222222222222 and role
name OrganizationAccountAccessRole plugged in:

provider "aws" {
  region = "us-east-2"
  alias  = "child" 
 
  assume_role {
    role_arn = 
"arn:aws:iam::222222222222:role/OrganizationAccountAccessRole" 
  }
}

Now, to check this is actually working, add two
aws_caller_identity data sources, and configure each one to use a
different provider:

data "aws_caller_identity" "parent" {
  provider = aws.parent
} 
 
data "aws_caller_identity" "child" {
  provider = aws.child
}

Finally, add output variables in outputs.tf to print out the account IDs:

output "parent_account_id" {
  value       = data.aws_caller_identity.parent.account_id
  description = "The ID of the parent AWS account"
} 
 
output "child_account_id" {
  value       = data.aws_caller_identity.child.account_id
  description = "The ID of the child AWS account"
}

Run apply, and you should see the different IDs for each account:

$ terraform apply 
 
(...) 



 
Apply complete! Resources: 0 added, 0 changed, 0 destroyed. 
 
Outputs: 
 
parent_account_id = "111111111111" 
child_account_id = "222222222222"

And there you have it: by using provider aliases and assume_role
blocks, you now know how to write Terraform code that can operate across
multiple AWS accounts.

As with the multiregion section, a few warnings:

Warning 1: Cross-account IAM roles are double opt-in

In order for an IAM role to allow access from one AWS account to
another—e.g., to allow an IAM role in account 222222222222 to be
assumed from account 111111111111—you need to grant
permissions in both AWS accounts:

First, in the AWS account where the IAM role lives (e.g., the child
account 222222222222), you must configure its assume role
policy to trust the other AWS account (e.g., the parent account
111111111111). This happened magically for you with the
OrganizationAccountAccessRole IAM role because AWS
Organizations automatically configures the assume role policy of
this IAM role to trust the parent account. However, for any custom
IAM roles you create, you need to remember to explicitly grant the
sts:AssumeRole permission yourself.

Second, in the AWS account from which you assume the role (e.g.,
the parent account 111111111111), you must also grant your user
permissions to assume that IAM role. Again, this happened for you
magically because, in Chapter 2, you gave your IAM user
AdministratorAccess, which gives you permissions to do just
about everything in the parent AWS account, including assuming
IAM roles. In most real-world use cases, your user won’t be



(shouldn’t be!) an admin, so you’ll need to explicitly grant your user
sts:AssumeRole permissions on the IAM role(s) you want to be
able to assume.

Warning 2: Use aliases sparingly

I said this in the multiregion example, but it bears repeating: although
it’s easy to use aliases with Terraform, I would caution against using
them too often, including with multi-account code. Typically, you use
multiple accounts to create separation between them, so if something
goes wrong in one account, it doesn’t affect the other. Modules that
deploy across multiple accounts go against this principle. Only do it
when you intentionally want to have resources in multiple accounts
coupled and deployed together.

Creating Modules That Can Work with Multiple Providers
When working with Terraform modules, you typically work with two types
of modules:

Reusable modules

These are low-level modules that are not meant to be deployed directly
but instead are to be combined with other modules, resources, and data
sources.

Root modules

These are high-level modules that combine multiple reusable modules
into a single unit that is meant to be deployed directly by running
apply (in fact, the definition of a root module is it’s the one on which
you run apply).

The multiprovider examples you’ve seen so far have put all the provider
blocks into the root module. What do you do if you want to create a
reusable module that works with multiple providers? For example, what if
you wanted to turn the multi-account code from the previous section into a



reusable module? As a first step, you might put all that code, unchanged,
into the modules/multi-account folder. Then, you could create a new
example to test it with in the examples/multi-account-module folder, with a
main.tf that looks like this:

module "multi_account_example" {
  source = "../../modules/multi-account"
}

If you run apply on this code, it’ll work, but there is a problem: all of the
provider configuration is now hidden in the module itself (in
modules/multi-account). Defining provider blocks within reusable
modules is an antipattern for several reasons:

Configuration problems

If you have provider blocks defined in your reusable module, then
that module controls all the configuration for that provider. For
example, the IAM role ARN and regions to use are currently hardcoded
in the modules/multi-account module. You could, of course, expose
input variables to allow users to set the regions and IAM role ARNs, but
that’s only the tip of the iceberg. If you browse the AWS Provider
documentation, you’ll find that there are roughly 50 different
configuration options you can pass into it! Many of these parameters are
going to be important for users of your module, as they control how to
authenticate to AWS, what region to use, what account (or IAM role) to
use, what endpoints to use when talking to AWS, what tags to apply or
ignore, and much more. Having to expose 50 extra variables in a
module will make that module very cumbersome to maintain and use.

Duplication problems

Even if you expose those 50 settings in your module, or whatever subset
you believe is important, you’re creating code duplication for users of
your module. That’s because it’s common to combine multiple modules
together, and if you have to pass in some subset of 50 settings into each
of those modules in order to get them to all authenticate correctly,



you’re going to have to copy and paste a lot of parameters, which is
tedious and error prone.

Performance problems

Every time you include a provider block in your code, Terraform
spins up a new process to run that provider, and communicates with that
process via RPC. If you have a handful of provider blocks, this
works just fine, but as you scale up, it may cause performance
problems. Here’s a real-world example: a few years ago, I created
reusable modules for CloudTrail, AWS Config, GuardDuty, IAM
Access Analyzer, and Macie. Each of these AWS services is supposed
to be deployed into every region in your AWS account, and as AWS had
~25 regions, I included 25 provider blocks in each of these modules.
I then created a single root module to deploy all of these as a “baseline”
in my AWS accounts: if you do the math, that’s 5 modules with 25
provider blocks each, or 125 provider blocks total. When I ran
apply, Terraform would fire up 125 processes, each making hundreds
of API and RPC calls. With thousands of concurrent network requests,
my CPU would start thrashing, and a single plan could take 20
minutes. Worse yet, this would sometimes overload the network stack,
leading to intermittent failures in API calls, and apply would fail with
sporadic errors.

Therefore, as a best practice, you should not define any provider blocks
in your reusable modules and instead allow your users to create the
provider blocks they need solely in their root modules. But then, how do
you build a module that can work with multiple providers? If the module
has no provider blocks in it, how do you define provider aliases that you
can reference in your resources and data sources?

The solution is to use configuration aliases. These are very similar to the
provider aliases you’ve seen already, except they aren’t defined in a
provider block. Instead, you define them in a required_providers
block.



Open up modules/multi-account/main.tf, remove the nested provider
blocks, and replace them with a required_providers block with
configuration aliases as follows:

terraform { 
  required_providers {
    aws = {
      source                = "hashicorp/aws"
      version               = "~> 4.0"
      configuration_aliases = [aws.parent, aws.child] 
    } 
  }
}

Just as with normal provider aliases, you can pass configuration aliases into
resources and data sources using the provider parameter:

data "aws_caller_identity" "parent" {
  provider = aws.parent
} 
 
data "aws_caller_identity" "child" {
  provider = aws.child
}

The key difference from normal provider aliases is that configuration
aliases don’t create any providers themselves; instead, they force users of
your module to explicitly pass in a provider for each of your configuration
aliases using a providers map.

Open up examples/multi-account-module/main.tf, and define the
provider blocks as before:

provider "aws" {
  region = "us-east-2"
  alias  = "parent"
} 
 
provider "aws" {
  region = "us-east-2"
  alias  = "child" 



 
  assume_role {
    role_arn = 
"arn:aws:iam::222222222222:role/OrganizationAccountAccessRole" 
  }
}

And now you can pass them into the modules/multi-account module as
follows:

module "multi_account_example" {
  source = "../../modules/multi-account" 
 
  providers = {
    aws.parent = aws.parent
    aws.child  = aws.child 
  }
}

The keys in the providers map must match the names of the
configuration aliases within the module; if any of the names from
configuration aliases are missing in the providers map, Terraform will
show an error. This way, when you’re building a reusable module, you can
define what providers that module needs, and Terraform will ensure users
pass those providers in; and when you’re building a root module, you can
define your provider blocks just once and pass around references to
them to the reusable modules you depend on.

Working with Multiple Different Providers
You’ve now seen how to work with multiple providers when all of them are
the same type of provider: e.g., multiple copies of the aws provider. This
section talks about how to work with multiple different providers.

Readers of the first two editions of this book often asked for examples of
using multiple clouds together (multicloud), but I couldn’t find much useful
to share. In part, this is because using multiple clouds is usually a bad
practice,  but even if you’re forced to do it (most large companies are2



multicloud, whether they want to be or not), it’s rare to manage multiple
clouds in a single module for the same reason it’s rare to manage multiple
regions or accounts in a single module. If you’re using multiple clouds,
you’re far better off managing each one in a separate module.

Moreover, translating every single AWS example in the book into the
equivalent solutions for other clouds (Azure and Google Cloud) is
impractical: the book would end up way too long, and while you would
learn more about each cloud, you wouldn’t learn any new Terraform
concepts along the way, which is the real goal of the book. If you do want
to see examples of what the Terraform code for similar infrastructure looks
like across different clouds, have a look at the examples folder in the
Terratest repo. As you’ll see in Chapter 9, Terratest provides a set of tools
for writing automated tests for different types of infrastructure code and
different types of clouds, so in the examples folder you’ll find Terraform
code for similar infrastructure in AWS, Google Cloud, and Azure, including
individual servers, groups of servers, databases, and more. You’ll also find
automated tests for all those examples in the test folder.

In this book, instead of an unrealistic multicloud example, I decided to
instead show you how to use multiple providers together in a slightly more
realistic scenario (one that was also requested by many readers of the first
two editions): namely, how to use the AWS Provider with the Kubernetes
provider to deploy Dockerized apps. Kubernetes is, in many ways, a cloud
of its own—it can run applications, networks, data stores, load balancers,
secret stores, and much more—so, in a sense, this is both a multiprovider
and multicloud example. And because Kubernetes is a cloud, that means
there is a lot to learn, so I’m going to have to build up to it one step at a
time, starting with mini crash courses on Docker and Kubernetes, before
finally moving on to the full multiprovider example that uses both AWS and
Kubernetes:

A crash course on Docker

A crash course on Kubernetes

https://oreil.ly/w2cmM


Deploying Docker containers in AWS using Elastic Kubernetes
Service (EKS)

A Crash Course on Docker
As you may remember from Chapter 1, Docker images are like self-
contained “snapshots” of the operating system (OS), the software, the files,
and all other relevant details. Let’s now see Docker in action.

First, if you don’t have Docker installed already, follow the instructions on
the Docker website to install Docker Desktop for your operating system.
Once it’s installed, you should have the docker command available on
your command line. You can use the docker run command to run
Docker images locally:

$ docker run <IMAGE> [COMMAND]

where IMAGE is the Docker image to run and COMMAND is an optional
command to execute. For example, here’s how you can run a Bash shell in
an Ubuntu 20.04 Docker image (note that the following command includes
the -it flag so you get an interactive shell where you can type):

$ docker run -it ubuntu:20.04 bash 
 
Unable to find image 'ubuntu:20.04' locally 
20.04: Pulling from library/ubuntu 
Digest: 
sha256:669e010b58baf5beb2836b253c1fd5768333f0d1dbcb834f7c07a4dc93
f474be 
Status: Downloaded newer image for ubuntu:20.04 
 
root@d96ad3779966:/#

And voilà, you’re now in Ubuntu! If you’ve never used Docker before, this
can seem fairly magical. Try running some commands. For example, you
can look at the contents of /etc/os-release to verify you really are in
Ubuntu:

https://oreil.ly/Ry4yn


root@d96ad3779966:/# cat /etc/os-release 
NAME="Ubuntu" 
VERSION="20.04.3 LTS (Focal Fossa)" 
ID=ubuntu 
ID_LIKE=debian 
PRETTY_NAME="Ubuntu 20.04.3 LTS" 
VERSION_ID="20.04" 
VERSION_CODENAME=focal

How did this happen? Well, first, Docker searches your local filesystem for
the ubuntu:20.04 image. If you don’t have that image downloaded
already, Docker downloads it automatically from Docker Hub, which is a
Docker Registry that contains shared Docker images. The ubuntu:20.04
image happens to be a public Docker image—an official one maintained by
the Docker team—so you’re able to download it without any authentication.
However, it’s also possible to create private Docker images that only certain
authenticated users can use.

Once the image is downloaded, Docker runs the image, executing the bash
command, which starts an interactive Bash prompt, where you can type. Try
running the ls command to see the list of files:

root@d96ad3779966:/# ls -al 
total 56 
drwxr-xr-x   1 root root 4096 Feb 22 14:22 . 
drwxr-xr-x   1 root root 4096 Feb 22 14:22 .. 
lrwxrwxrwx   1 root root    7 Jan 13 16:59 bin -> usr/bin 
drwxr-xr-x   2 root root 4096 Apr 15  2020 boot 
drwxr-xr-x   5 root root  360 Feb 22 14:22 dev 
drwxr-xr-x   1 root root 4096 Feb 22 14:22 etc 
drwxr-xr-x   2 root root 4096 Apr 15  2020 home 
lrwxrwxrwx   1 root root    7 Jan 13 16:59 lib -> usr/lib 
drwxr-xr-x   2 root root 4096 Jan 13 16:59 media 
(...)

You might notice that’s not your filesystem. That’s because Docker images
run in containers that are isolated at the userspace level: when you’re in a
container, you can only see the filesystem, memory, networking, etc., in that
container. Any data in other containers, or on the underlying host operating
system, is not accessible to you, and any data in your container is not



visible to those other containers or the underlying host operating system.
This is one of the things that makes Docker useful for running applications:
the image format is self-contained, so Docker images run the same way no
matter where you run them, and no matter what else is running there.

To see this in action, write some text to a test.txt file as follows:

root@d96ad3779966:/# echo "Hello, World!" > test.txt

Next, exit the container by hitting Ctrl-D on Windows and Linux or Cmd-D
on macOS, and you should be back in your original command prompt on
your underlying host OS. If you try to look for the test.txt file you just
wrote, you’ll see that it doesn’t exist: the container’s filesystem is totally
isolated from your host OS.

Now, try running the same Docker image again:

$ docker run -it ubuntu:20.04 bash 
root@3e0081565a5d:/#

Notice that this time, since the ubuntu:20.04 image is already
downloaded, the container starts almost instantly. This is another reason
Docker is useful for running applications: unlike virtual machines,
containers are lightweight, boot up quickly, and incur little CPU or memory
overhead.

You may also notice that the second time you fired up the container, the
command prompt looked different. That’s because you’re now in a totally
new container; any data you wrote in the previous one is no longer
accessible to you. Run ls -al and you’ll see that the test.txt file does not
exist. Containers are isolated not only from the host OS but also from each
other.

Hit Ctrl-D or Cmd-D again to exit the container, and back on your host OS,
run the docker ps -a command:

$ docker ps -a 
CONTAINER ID   IMAGE            COMMAND    CREATED          



STATUS 
3e0081565a5d   ubuntu:20.04     "bash"     5 min ago    Exited 
(0) 16 sec ago 
d96ad3779966   ubuntu:20.04     "bash"     14 min ago   Exited 
(0) 5 min ago

This will show you all the containers on your system, including the stopped
ones (the ones you exited). You can start a stopped container again by using
the docker start <ID> command, setting ID to an ID from the
CONTAINER ID column of the docker ps output. For example, here is
how you can start the first container up again (and attach an interactive
prompt to it via the -ia flags):

$ docker start -ia d96ad3779966 
root@d96ad3779966:/#

You can confirm this is really the first container by outputting the contents
of test.txt:

root@d96ad3779966:/# cat test.txt 
Hello, World!

Let’s now see how a container can be used to run a web app. Hit Ctrl-D or
Cmd-D again to exit the container, and back on your host OS, run a new
container:

$ docker run training/webapp 
 * Running on http://0.0.0.0:5000/ (Press CTRL+C to quit)

The training/webapp image contains a simple Python “Hello, World” web
app for testing. When you run the image, it fires up the web app, listening
on port 5000 by default. However, if you open a new terminal on your host
operating system and try to access the web app, it won’t work:

$ curl localhost:5000 
curl: (7) Failed to connect to localhost port 5000: Connection 
refused
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What’s the problem? Actually, it’s not a problem but a feature! Docker
containers are isolated from the host operating system and other containers,
not only at the filesystem level but also in terms of networking. So while
the container really is listening on port 5000, that is only on a port inside
the container, which isn’t accessible on the host OS. If you want to expose a
port from the container on the host OS, you have to do it via the -p flag.

First, hit Ctrl-C to shut down the training/webapp container: note that
it’s C this time, not D, and it’s Ctrl regardless of OS, as you’re shutting
down a process, rather than exiting an interactive prompt. Now rerun the
container but this time with the -p flag as follows:

$ docker run -p 5000:5000 training/webapp 
 * Running on http://0.0.0.0:5000/ (Press CTRL+C to quit)

Adding -p 5000:5000 to the command tells Docker to expose port 5000
inside the container on port 5000 of the host OS. In another terminal on
your host OS, you should now be able to see the web app working:

$ curl localhost:5000 
Hello world!

CLEANING UP CONTAINERS
Every time you run docker run and exit, you are leaving behind containers, which
take up disk space. You may wish to clean them up with the docker rm
<CONTAINER_ID> command, where CONTAINER_ID is the ID of the container from
the docker ps output. Alternatively, you could include the --rm flag in your
docker run command to have Docker automatically clean up when you exit the
container.

A Crash Course on Kubernetes
Kubernetes is an orchestration tool for Docker, which means it’s a platform
for running and managing Docker containers on your servers, including
scheduling (picking which servers should run a given container workload),



auto healing (automatically redeploying containers that failed), auto scaling
(scaling the number of containers up and down in response to load), load
balancing (distributing traffic across containers), and much more.

Under the hood, Kubernetes consists of two main pieces:

Control plane

The control plane is responsible for managing the Kubernetes cluster. It
is the “brains” of the operation, responsible for storing the state of the
cluster, monitoring containers, and coordinating actions across the
cluster. It also runs the API server, which provides an API you can use
from command-line tools (e.g., kubectl), web UIs (e.g., the
Kubernetes Dashboard), and IaC tools (e.g., Terraform) to control
what’s happening in the cluster.

Worker nodes

The worker nodes are the servers used to actually run your containers.
The worker nodes are entirely managed by the control plane, which tells
each worker node what containers it should run.

Kubernetes is open source, and one of its strengths is that you can run it
anywhere: in any public cloud (e.g., AWS, Azure, Google Cloud), in your
own datacenter, and even on your own developer workstation. A little later
in this chapter, I’ll show you how you can run Kubernetes in the cloud (in
AWS), but for now, let’s start small and run it locally. This is easy to do if
you installed a relatively recent version of Docker Desktop, as it has the
ability to fire up a Kubernetes cluster locally with just a few clicks.

If you open Docker Desktop’s preferences on your computer, you should
see Kubernetes in the nav, as shown in Figure 7-7.



Figure 7-7. Enable Kubernetes on Docker Desktop.

If it’s not enabled already, check the Enable Kubernetes checkbox, click
Apply & Restart, and wait a few minutes for that to complete. In the
meantime, follow the instructions on the Kubernetes website to install
kubectl, which is the command-line tool for interacting with Kubernetes.

To use kubectl, you must first update its configuration file, which lives
in $HOME/.kube/config (that is, the .kube folder of your home directory), to
tell it what Kubernetes cluster to connect to. Conveniently, when you enable
Kubernetes in Docker Desktop, it updates this config file for you, adding a
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docker-desktop entry to it, so all you need to do is tell kubectl to
use this configuration as follows:

$ kubectl config use-context docker-desktop 
Switched to context "docker-desktop".

Now you can check if your Kubernetes cluster is working with the get
nodes command:

$ kubectl get nodes 
NAME             STATUS   ROLES                  AGE   VERSION 
docker-desktop   Ready    control-plane,master   95m   v1.22.5

The get nodes command shows you information about all the nodes in
your cluster. Since you’re running Kubernetes locally, your computer is the
only node, and it’s running both the control plane and acting as a worker
node. You’re now ready to run some Docker containers!

To deploy something in Kubernetes, you create Kubernetes objects, which
are persistent entities you write to the Kubernetes cluster (via the API
server) that record your intent: e.g., your intent to have specific Docker
images running. The cluster runs a reconciliation loop, which continuously
checks the objects you stored in it and works to make the state of the cluster
match your intent.

There are many different types of Kubernetes objects available. For the
examples in this book, let’s use the following two objects:

Kubernetes Deployment

A Kubernetes Deployment is a declarative way to manage an
application in Kubernetes. You declare what Docker images to run, how
many copies of them to run (called replicas), a variety of settings for
those images (e.g., CPU, memory, port numbers, environment
variables), and the strategy to roll out updates to those images, and the
Kubernetes Deployment will then work to ensure that the requirements
you declared are always met. For example, if you specified you wanted
three replicas, but one of the worker nodes went down so only two



replicas are left, the Deployment will automatically spin up a third
replica on one of the other worker nodes.

Kubernetes Service

A Kubernetes Service is a way to expose a web app running in
Kubernetes as a networked service. For example, you can use a
Kubernetes Service to configure a load balancer that exposes a public
endpoint and distributes traffic from that endpoint across the replicas in
a Kubernetes Deployment.

The idiomatic way to interact with Kubernetes is to create YAML files
describing what you want—e.g., one YAML file that defines the Kubernetes
Deployment and another one that defines the Kubernetes Service—and to
use the kubectl apply command to submit those objects to the cluster.
However, using raw YAML has drawbacks, such as a lack of support for
code reuse (e.g., variables, modules), abstraction (e.g., loops, if-statements),
clear standards on how to store and manage the YAML files (e.g., to track
changes to the cluster over time), and so on. Therefore, many Kubernetes
users turn to alternatives, such as Helm or Terraform. Since this is a book
on Terraform, I’m going to show you how to create a Terraform module
called k8s-app (K8S is an acronym for Kubernetes in the same way that
I18N is an acronym for internationalization) that deploys an app in
Kubernetes using a Kubernetes Deployment and Kubernetes Service.

Create a new module in the modules/services/k8s-app folder. Within that
folder, create a variables.tf file that defines the module’s API via the
following input variables:

variable "name" {
  description = "The name to use for all resources created by 
this module"
  type        = string
} 
 
variable "image" {
  description = "The Docker image to run"
  type        = string



} 
 
variable "container_port" {
  description = "The port the Docker image listens on"
  type        = number
} 
 
variable "replicas" {
  description = "How many replicas to run"
  type        = number
} 
 
variable "environment_variables" {
  description = "Environment variables to set for the app"
  type        = map(string)
  default     = {}
}

This should give you just about all the inputs you need for creating the
Kubernetes Deployment and Service. Next, add a main.tf file, and at the
top, add the required_providers block to it with the Kubernetes
provider:

terraform {
  required_version = ">= 1.0.0, < 2.0.0" 
 
  required_providers {
    kubernetes = {
      source  = "hashicorp/kubernetes"
      version = "~> 2.0" 
    } 
  }
}

Hey, a new provider, neat! OK, let’s make use of that provider to create a
Kubernetes Deployment by using the kubernetes_deployment
resource:

resource "kubernetes_deployment" "app" {
}



There are quite a few settings to configure within the
kubernetes_deployment resource, so let’s go through them one at a
time. First, you need to configure the metadata block:

resource "kubernetes_deployment" "app" { 
  metadata {
    name = var.name 
  }
}

Every Kubernetes object includes metadata that can be used to identify and
target that object in API calls. In the preceding code, I’m setting the
Deployment name to the name input variable.

The rest of the configuration for the kubernetes_deployment
resource goes into the spec block:

resource "kubernetes_deployment" "app" { 
  metadata {
    name = var.name 
  } 
 
  spec { 
  }
}

The first item to put into the spec block is to specify the number of
replicas to create:

  spec {
    replicas = var.replicas 
  }

Next, define the template block:

  spec {
    replicas = var.replicas 
 
    template { 
    } 
  }



In Kubernetes, instead of deploying one container at a time, you deploy
Pods, which are groups of containers that are meant to be deployed
together. For example, you could have a Pod with one container to run a
web app (e.g., the Python app you saw earlier) and another container that
gathers metrics on the web app and sends them to a central service (e.g.,
Datadog). The template block is where you define the Pod Template,
which specifies what container(s) to run, the ports to use, environment
variables to set, and so on.

One important ingredient in the Pod Template will be the labels to apply to
the Pod. You’ll need to reuse these labels in several places—e.g., the
Kubernetes Service uses labels to identify the Pods that need to be load
balanced—so let’s define those labels in a local variable called
pod_labels:

locals {
  pod_labels = {
    app = var.name 
  }
}

And now use pod_labels in the metadata block of the Pod Template:

  spec {
    replicas = var.replicas 
 
    template { 
      metadata {
        labels = local.pod_labels 
      } 
    } 
  }

Next, add a spec block inside of template:

  spec {
    replicas = var.replicas 
 
    template { 
      metadata {



        labels = local.pod_labels 
      } 
 
      spec { 
        container {
          name  = var.name
          image = var.image 
 
          port {
            container_port = var.container_port 
          } 
 
          dynamic "env" {
            for_each = var.environment_variables 
            content {
              name  = env.key
              value = env.value 
            } 
          } 
        } 
      } 
    } 
  }

There’s a lot here, so let’s go through it one piece at a time:

container

Inside the spec block, you can define one or more container blocks
to specify which Docker containers to run in this Pod. To keep this
example simple, there’s just one container block in the Pod. The
rest of these items are all within this container block.

name

The name to use for the container. I’ve set this to the name input
variable.

image

The Docker image to run in the container. I’ve set this to the image
input variable.



port

The ports to expose in the container. To keep the code simple, I’m
assuming the container only needs to listen on one port, set to the
container_port input variable.

env

The environment variables to expose to the container. I’m using a
dynamic block with for_each (two concepts you may remember
from Chapter 5) to set this to the variables in the
environment_variables input variable.

OK, that wraps up the Pod Template. There’s just one thing left to add to
the kubernetes_deployment resource—a selector block:

  spec {
    replicas = var.replicas 
 
    template { 
      metadata {
        labels = local.pod_labels 
      } 
 
      spec { 
        container {
          name  = var.name
          image = var.image 
 
          port {
            container_port = var.container_port 
          } 
 
          dynamic "env" {
            for_each = var.environment_variables 
            content {
              name  = env.key
              value = env.value 
            } 
          } 
        } 
      } 



    } 
 
    selector {
      match_labels = local.pod_labels 
    } 
  }

The selector block tells the Kubernetes Deployment what to target. By
setting it to pod_labels, you are telling it to manage deployments for the
Pod Template you just defined. Why doesn’t the Deployment just assume
that the Pod Template defined within that Deployment is the one you want
to target? Well, Kubernetes tries to be an extremely flexible and decoupled
system: e.g., it’s possible to define a Deployment for Pods that are defined
separately, so you always need to specify a selector to tell the
Deployment what to target.

That wraps up the kubernetes_deployment resource. The next step is
to use the kubernetes_service resource to create a Kubernetes
Service:

resource "kubernetes_service" "app" { 
  metadata {
    name = var.name 
  } 
 
  spec {
    type = "LoadBalancer" 
    port {
      port        = 80
      target_port = var.container_port
      protocol    = "TCP" 
    }
    selector = local.pod_labels 
  }
}

Let’s go through these parameters:

metadata

Just as with the Deployment object, the Service object uses metadata to
identify and target that object in API calls. In the preceding code, I’ve



set the Service name to the name input variable.

type

I’ve configured this Service as type LoadBalancer, which,
depending on how your Kubernetes cluster is configured, will deploy a
different type of load balancer: e.g., in AWS, with EKS, you might get
an Elastic Load Balancer, whereas in Google Cloud, with GKE, you
might get a Cloud Load Balancer.

port

I’m configuring the load balancer to route traffic on port 80 (the default
port for HTTP) to the port the container is listening on.

selector

Just as with the Deployment object, the Service object uses a selector to
specify what that Service should be targeting. By setting the selector to
pod_labels, the Service and the Deployment will both operate on
the same Pods.

The final step is to expose the Service endpoint (the load balancer
hostname) as an output variable in outputs.tf:

locals {
  status = kubernetes_service.app.status
} 
 
output "service_endpoint" {
  value = try( 
    "http://${local.status[0]["load_balancer"][0]["ingress"][0]
["hostname"]}", 
    "(error parsing hostname from status)" 
  )
  description = "The K8S Service endpoint"
}



This convoluted code needs a bit of explanation. The
kubernetes_service resource has an output attribute called status
that returns the latest status of the Service. I’ve stored this attribute in a
local variable called status. For a Service of type LoadBalancer,
status will contain a complicated object that looks something like this:

[ 
  {
    load_balancer = [ 
      {
        ingress = [ 
          {
            hostname = "<HOSTNAME>" 
          } 
        ] 
      } 
    ] 
  }
]

Buried within this deeply nested object is the hostname for the load
balancer that you want. This is why the service_endpoint output
variable needs to use a complicated sequence of array lookups (e.g., [0])
and map lookups (e.g., ["load_balancer"]) to extract the hostname.
But what happens if the status attribute returned by the
kubernetes_service resource happens to look a little different? In
that case, any of those array and map lookups could fail, leading to a
confusing error.

To handle this error gracefully, I’ve wrapped the entire expression in a
function called try. The try function has the following syntax:

try(ARG1, ARG2, ..., ARGN)

This function evaluates all the arguments you pass to it and returns the first
argument that doesn’t produce any errors. Therefore, the
service_endpoint output variable will either end up with a hostname
in it (the first argument) or, if reading the hostname caused an error, the



variable will instead say “error parsing hostname from status” (the second
argument).

OK, that wraps up the k8s-app module. To use it, add a new example in
examples/kubernetes-local, and create a main.tf file in it with the following
contents:

module "simple_webapp" {
  source = "../../modules/services/k8s-app" 
 
  name           = "simple-webapp"
  image          = "training/webapp"
  replicas       = 2
  container_port = 5000
}

This configures the module to deploy the training/webapp Docker
image you ran earlier, with two replicas listening on port 5000, and to name
all the Kubernetes objects (based on their metadata) “simple-webapp”.
To have this module deploy into your local Kubernetes cluster, add the
following provider block:

provider "kubernetes" {
  config_path    = "~/.kube/config"
  config_context = "docker-desktop"
}

This code tells the Kubernetes provider to authenticate to your local
Kubernetes cluster by using the docker-desktop context from your
kubectl config. Run terraform apply to see how it works:

$ terraform apply 
 
(...) 
 
Apply complete! Resources: 2 added, 0 changed, 0 destroyed. 
 
Outputs: 
 
service_endpoint = "http://localhost"



Give the app a few seconds to boot and then try out that
service_endpoint:

$ curl http://localhost 
Hello world!

Success!

That said, this looks nearly identical to the output of the docker run
command, so was all that extra work worth it? Well, let’s look under the
hood to see what’s going on. You can use kubectl to explore your cluster.
First, run the get deployments command:

$ kubectl get deployments 
NAME            READY   UP-TO-DATE   AVAILABLE   AGE 
simple-webapp   2/2     2            2           3m21s

You can see your Kubernetes Deployment, named simple-webapp, as
that was the name in the metadata block. This Deployment is reporting
that 2/2 Pods (the two replicas) are ready. To see those Pods, run the get
pods command:

$ kubectl get pods 
NAME                            READY   STATUS    RESTARTS   AGE 
simple-webapp-d45b496fd-7d447   1/1     Running   0          
2m36s 
simple-webapp-d45b496fd-vl6j7   1/1     Running   0          
2m36s

So that’s one difference from docker run already: there are multiple
containers running here, not just one. Moreover, those containers are being
actively monitored and managed. For example, if one crashed, a
replacement will be deployed automatically. You can see this in action by
running the docker ps command:

$ docker ps 
CONTAINER ID   IMAGE             COMMAND           CREATED         
STATUS 



b60f5147954a   training/webapp   "python app.py"   3 seconds ago   
Up 2 seconds 
c350ec648185   training/webapp   "python app.py"   12 minutes ago  
Up 12 minutes

Grab the CONTAINER ID of one of those containers, and use the docker
kill command to shut it down:

$ docker kill b60f5147954a

If you run docker ps again very quickly, you’ll see just one container
left running:

$ docker ps 
CONTAINER ID   IMAGE             COMMAND           CREATED         
STATUS 
c350ec648185   training/webapp   "python app.py"   12 minutes ago  
Up 12 minutes

But just a few seconds later, the Kubernetes Deployment will have detected
that there is only one replica instead of the requested two, and it’ll launch a
replacement container automatically:

$ docker ps 
CONTAINER ID   IMAGE             COMMAND           CREATED         
STATUS 
56a216b8a829   training/webapp   "python app.py"   1 second ago    
Up 5 seconds 
c350ec648185   training/webapp   "python app.py"   12 minutes ago  
Up 12 minutes

So Kubernetes is ensuring that you always have the expected number of
replicas running. Moreover, it is also running a load balancer to distribute
traffic across those replicas, which you can see by running the kubectl
get services command:

$ kubectl get services 
NAME            TYPE           CLUSTER-IP     EXTERNAL-IP   
PORT(S)        AGE 
kubernetes      ClusterIP      10.96.0.1      <none>        



443/TCP        4h26m 
simple-webapp   LoadBalancer   10.110.25.79   localhost     
80:30234/TCP   4m58s

The first service in the list is Kubernetes itself, which you can ignore. The
second is the Service you created, also with the name simple-webapp
(based on the metadata block). This service runs a load balancer for your
app: you can see the IP it’s accessible at (localhost) and the port it’s
listening on (80).

Kubernetes Deployments also provide automatic rollout of updates. A fun
trick with the training/webapp Docker image is that if you set the
environment variable PROVIDER to some value, it’ll use that value instead
of the word world in the text “Hello, world!” Update examples/kubernetes-
local/main.tf to set this environment variable as follows:

module "simple_webapp" {
  source = "../../modules/services/k8s-app" 
 
  name           = "simple-webapp"
  image          = "training/webapp"
  replicas       = 2
  container_port = 5000 
 
  environment_variables = {
    PROVIDER = "Terraform" 
  }
}

Run apply one more time:

$ terraform apply 
 
(...) 
 
Apply complete! Resources: 0 added, 1 changed, 0 destroyed. 
 
Outputs: 
 
service_endpoint = "http://localhost"



After a few seconds, try the endpoint again:

$ curl http://localhost 
Hello Terraform!

And there you go, the Deployment has rolled out your change
automatically: under the hood, Deployments do a rolling deployment by
default, similar to what you saw with Auto Scaling Groups (note that you
can change deployment settings by adding a strategy block to the
kubernetes_deployment resource).

Deploying Docker Containers in AWS Using Elastic
Kubernetes Service
Kubernetes has one more trick up its sleeve: it’s fairly portable. That is, you
can reuse both the Docker images and the Kubernetes configurations in a
totally different cluster and get similar results. To see this in action, let’s
now deploy a Kubernetes cluster in AWS.

Setting up and managing a secure, highly available, scalable Kubernetes
cluster in the cloud from scratch is complicated. Fortunately, most cloud
providers offer managed Kubernetes services, where they run the control
plane and worker nodes for you: e.g., Elastic Kubernetes Service (EKS) in
AWS, Azure Kubernetes Service (AKS) in Azure, and Google Kubernetes
Engine (GKE) in Google Cloud. I’m going to show you how to deploy a
very basic EKS cluster in AWS.

Create a new module in modules/services/eks-cluster, and define the API
for the module in a variables.tf file with the following input variables:

variable "name" {
  description = "The name to use for the EKS cluster"
  type        = string
} 
 
variable "min_size" {
  description = "Minimum number of nodes to have in the EKS 
cluster"
  type        = number



} 
 
variable "max_size" {
  description = "Maximum number of nodes to have in the EKS 
cluster"
  type        = number
} 
 
variable "desired_size" {
  description = "Desired number of nodes to have in the EKS 
cluster"
  type        = number
} 
 
variable "instance_types" {
  description = "The types of EC2 instances to run in the node 
group"
  type        = list(string)
}

This code exposes input variables to set the EKS cluster’s name, size, and
the types of instances to use for the worker nodes. Next, in main.tf, create
an IAM role for the control plane:

# Create an IAM role for the control plane
resource "aws_iam_role" "cluster" {
  name               = "${var.name}-cluster-role"
  assume_role_policy = 
data.aws_iam_policy_document.cluster_assume_role.json
} 
 
# Allow EKS to assume the IAM role
data "aws_iam_policy_document" "cluster_assume_role" { 
  statement {
    effect  = "Allow"
    actions = ["sts:AssumeRole"] 
    principals {
      type        = "Service"
      identifiers = ["eks.amazonaws.com"] 
    } 
  }
} 
 
# Attach the permissions the IAM role needs
resource "aws_iam_role_policy_attachment" 
"AmazonEKSClusterPolicy" {



  policy_arn = "arn:aws:iam::aws:policy/AmazonEKSClusterPolicy"
  role       = aws_iam_role.cluster.name
}

This IAM role can be assumed by the EKS service, and it has a Managed
IAM Policy attached that gives the control plane the permissions it needs.
Now, add the aws_vpc and aws_subnets data sources to fetch
information about the Default VPC and its subnets:

# Since this code is only for learning, use the Default VPC and 
subnets.
# For real-world use cases, you should use a custom VPC and 
private subnets. 
 
data "aws_vpc" "default" {
  default = true
} 
 
data "aws_subnets" "default" { 
  filter {
    name   = "vpc-id"
    values = [data.aws_vpc.default.id] 
  }
}

Now you can create the control plane for the EKS cluster by using the
aws_eks_cluster resource:

resource "aws_eks_cluster" "cluster" {
  name     = var.name
  role_arn = aws_iam_role.cluster.arn
  version  = "1.21" 
 
  vpc_config {
    subnet_ids = data.aws_subnets.default.ids 
  } 
 
  # Ensure that IAM Role permissions are created before and 
deleted after
  # the EKS Cluster. Otherwise, EKS will not be able to properly 
delete
  # EKS managed EC2 infrastructure such as Security Groups.
  depends_on = [ 
    aws_iam_role_policy_attachment.AmazonEKSClusterPolicy 



  ]
}

The preceding code configures the control plane to use the IAM role you
just created, and to deploy into the Default VPC and subnets.

Next up are the worker nodes. EKS supports several different types of
worker nodes: self-managed EC2 Instances (e.g., in an ASG that you
create), AWS-managed EC2 Instances (known as a managed node group),
and Fargate (serverless).  The simplest option to use for the examples in
this chapter will be the managed node groups.

To deploy a managed node group, you first need to create another IAM role:

# Create an IAM role for the node group
resource "aws_iam_role" "node_group" {
  name               = "${var.name}-node-group"
  assume_role_policy = 
data.aws_iam_policy_document.node_assume_role.json
} 
 
# Allow EC2 instances to assume the IAM role
data "aws_iam_policy_document" "node_assume_role" { 
  statement {
    effect  = "Allow"
    actions = ["sts:AssumeRole"] 
    principals {
      type        = "Service"
      identifiers = ["ec2.amazonaws.com"] 
    } 
  }
} 
 
# Attach the permissions the node group needs
resource "aws_iam_role_policy_attachment" 
"AmazonEKSWorkerNodePolicy" {
  policy_arn = 
"arn:aws:iam::aws:policy/AmazonEKSWorkerNodePolicy"
  role       = aws_iam_role.node_group.name
} 
 
resource "aws_iam_role_policy_attachment" 
"AmazonEC2ContainerRegistryReadOnly" {
  policy_arn = 
"arn:aws:iam::aws:policy/AmazonEC2ContainerRegistryReadOnly"
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  role       = aws_iam_role.node_group.name
} 
 
resource "aws_iam_role_policy_attachment" "AmazonEKS_CNI_Policy" 
{
  policy_arn = "arn:aws:iam::aws:policy/AmazonEKS_CNI_Policy"
  role       = aws_iam_role.node_group.name
}

This IAM role can be assumed by the EC2 service (which makes sense, as
managed node groups use EC2 Instances under the hood), and it has several
Managed IAM Policies attached that give the managed node group the
permissions it needs. Now you can use the aws_eks_node_group
resource to create the managed node group itself:

resource "aws_eks_node_group" "nodes" {
  cluster_name    = aws_eks_cluster.cluster.name
  node_group_name = var.name
  node_role_arn   = aws_iam_role.node_group.arn
  subnet_ids      = data.aws_subnets.default.ids
  instance_types  = var.instance_types 
 
  scaling_config {
    min_size     = var.min_size
    max_size     = var.max_size
    desired_size = var.desired_size 
  } 
 
  # Ensure that IAM Role permissions are created before and 
deleted after
  # the EKS Node Group. Otherwise, EKS will not be able to 
properly
  # delete EC2 Instances and Elastic Network Interfaces.
  depends_on = [ 
    aws_iam_role_policy_attachment.AmazonEKSWorkerNodePolicy, 
    
aws_iam_role_policy_attachment.AmazonEC2ContainerRegistryReadOnly
, 
    aws_iam_role_policy_attachment.AmazonEKS_CNI_Policy, 
  ]
}

This code configures the managed node group to use the control plane and
IAM role you just created, to deploy into the Default VPC, and to use the



name, size, and instance type parameters passed in as input variables.

In outputs.tf, add the following output variables:

output "cluster_name" {
  value       = aws_eks_cluster.cluster.name
  description = "Name of the EKS cluster"
} 
 
output "cluster_arn" {
  value       = aws_eks_cluster.cluster.arn
  description = "ARN of the EKS cluster"
} 
 
output "cluster_endpoint" {
  value       = aws_eks_cluster.cluster.endpoint
  description = "Endpoint of the EKS cluster"
} 
 
output "cluster_certificate_authority" {
  value       = aws_eks_cluster.cluster.certificate_authority
  description = "Certificate authority of the EKS cluster"
}

OK, the eks-cluster module is now ready to roll. Let’s use it and the
k8s-app module from earlier to deploy an EKS cluster and to deploy the
training/webapp Docker image into that cluster. Create
examples/kubernetes-eks/main.tf, and configure the eks-cluster
module as follows:

provider "aws" {
  region = "us-east-2"
} 
 
module "eks_cluster" {
  source = "../../modules/services/eks-cluster" 
 
  name         = "example-eks-cluster"
  min_size     = 1
  max_size     = 2
  desired_size = 1 
 
  # Due to the way EKS works with ENIs, t3.small is the smallest
  # instance type that can be used for worker nodes. If you try



  # something smaller like t2.micro, which only has 4 ENIs,
  # they'll all be used up by system services (e.g., kube-proxy)
  # and you won't be able to deploy your own Pods.
  instance_types = ["t3.small"]
}

Next, configure the k8s-app module as follows:

provider "kubernetes" {
  host = module.eks_cluster.cluster_endpoint
  cluster_ca_certificate = base64decode( 
    module.eks_cluster.cluster_certificate_authority[0].data 
  )
  token = data.aws_eks_cluster_auth.cluster.token
} 
 
data "aws_eks_cluster_auth" "cluster" {
  name = module.eks_cluster.cluster_name
} 
 
module "simple_webapp" {
  source = "../../modules/services/k8s-app" 
 
  name           = "simple-webapp"
  image          = "training/webapp"
  replicas       = 2
  container_port = 5000 
 
  environment_variables = {
    PROVIDER = "Terraform" 
  } 
 
  # Only deploy the app after the cluster has been deployed
  depends_on = [module.eks_cluster]
}

The preceding code configures the Kubernetes provider to authenticate to
the EKS cluster, rather than your local Kubernetes cluster (from Docker
Desktop). It then uses the k8s-app module to deploy the
training/webapp Docker image exactly the same way as you did when
deploying it to Docker Desktop; the only difference is the addition of the
depends_on parameter to ensure that Terraform only tries to deploy the
Docker image after the EKS cluster has been deployed.



Next, pass through the service endpoint as an output variable:

output "service_endpoint" {
  value       = module.simple_webapp.service_endpoint
  description = "The K8S Service endpoint"
}

OK, now you’re ready to deploy! Run terraform apply as usual (note
that EKS clusters can take 10–20 minutes to deploy, so be patient):

$ terraform apply 
 
(...) 
 
Apply complete! Resources: 10 added, 0 changed, 0 destroyed. 
 
Outputs: 
 
service_endpoint = "http://774696355.us-east-2.elb.amazonaws.com"

Wait a little while for the web app to spin up and pass health checks, and
then test out the service_endpoint:

$ curl http://774696355.us-east-2.elb.amazonaws.com 
Hello Terraform!

And there you have it! The same Docker image and Kubernetes code is now
running in an EKS cluster in AWS, just the way it ran on your local
computer. All the same features work here too. For example, try updating
environment_variables to a different PROVIDER value, such as
“Readers”:

module "simple_webapp" {
  source = "../../modules/services/k8s-app" 
 
  name           = "simple-webapp"
  image          = "training/webapp"
  replicas       = 2
  container_port = 5000 
 
  environment_variables = {



    PROVIDER = "Readers" 
  } 
 
  # Only deploy the app after the cluster has been deployed
  depends_on = [module.eks_cluster]
}

Rerun apply, and just a few seconds later, the Kubernetes Deployment
will have deployed the changes:

$ curl http://774696355.us-east-2.elb.amazonaws.com 
Hello Readers!

This is one of the advantages of using Docker: changes can be deployed
very quickly.

You can use kubectl again to see what’s happening in your cluster. To
authenticate kubectl to the EKS cluster, you can use the aws eks
update-kubeconfig command to automatically update your
$HOME/.kube/config file:

$ aws eks update-kubeconfig --region <REGION> --name 
<EKS_CLUSTER_NAME>

where REGION is the AWS region and EKS_CLUSTER_NAME is the name
of your EKS cluster. In the Terraform module, you deployed to the us-
east-2 region and named the cluster kubernetes-example, so the
command will look like this:

$ aws eks update-kubeconfig --region us-east-2 --name kubernetes-
example

Now, just as before, you can use the get nodes command to inspect the
worker nodes in your cluster, but this time, add the -o wide flag to get a
bit more info:

$ kubectl get nodes 
NAME                             STATUS   AGE   EXTERNAL-IP    
OS-IMAGE 



xxx.us-east-2.compute.internal   Ready    22m   3.134.78.187   
Amazon Linux 2

The preceding snippet is highly truncated to fit into the book, but in the real
output, you should be able to see the one worker node, its internal and
external IP, version information, OS information, and much more.

You can use the get deployments command to inspect your
Deployments:

$ kubectl get deployments 
NAME            READY   UP-TO-DATE   AVAILABLE   AGE 
simple-webapp   2/2     2            2           19m

Next, run get pods to see the Pods:

$ kubectl get pods 
NAME            READY   UP-TO-DATE   AVAILABLE   AGE 
simple-webapp   2/2     2            2           19m

And finally, run get services to see the Services:

$ kubectl get services 
NAME            TYPE           EXTERNAL-IP                         
PORT(S) 
kubernetes      ClusterIP      <none>                              
443/TCP 
simple-webapp   LoadBalancer   774696355.us-east-
2.elb.amazonaws.com    80/TCP

You should be able to see your load balancer and the URL you used to test
it.

So there you have it: two different providers, both working in the same
cloud, helping you to deploy containerized workloads.

That said, just as in previous sections, I want to leave you with a few
warnings:

Warning 1: These Kubernetes examples are very simplified!



Kubernetes is complicated, and it’s rapidly evolving and changing;
trying to explain all the details can easily fill a book all by itself. Since
this is a book about Terraform, and not Kubernetes, my goal with the
Kubernetes examples in this chapter was to keep them as simple and
minimal as possible. Therefore, while I hope the code examples you’ve
seen have been useful from a learning and experimentation perspective,
if you are going to use Kubernetes for real-world, production use cases,
you’ll need to change many aspects of this code, such as configuring a
number of additional services and settings in the eks-cluster
module (e.g., ingress controllers, secret envelope encryption, security
groups, OIDC authentication, Role-Based Access Control (RBAC)
mapping, VPC CNI, kube-proxy, CoreDNS), exposing many other
settings in the k8s-app module (e.g., secrets management, volumes,
liveness probes, readiness probes, labels, annotations, multiple ports,
multiple containers), and using a custom VPC with private subnets for
your EKS cluster instead of the Default VPC and public subnets.

Warning 2: Use multiple providers sparingly

Although you certainly can use multiple providers in a single module, I
don’t recommend doing it too often, for similar reasons to why I don’t
recommend using provider aliases too often: in most cases, you want
each provider to be isolated in its own module so that you can manage it
separately and limit the blast radius from mistakes or attackers.

Moreover, Terraform doesn’t have great support for dependency
ordering between providers. For example, in the Kubernetes example,
you had a single module that deployed both the EKS cluster, using the
AWS Provider, and a Kubernetes app into that cluster, using the
Kubernetes provider. As it turns out, the Kubernetes provider
documentation explicitly recommends against this pattern:
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When using interpolation to pass credentials to the Kubernetes
provider from other resources, these resources SHOULD NOT be
created in the same Terraform module where Kubernetes provider
resources are also used. This will lead to intermittent and
unpredictable errors which are hard to debug and diagnose. The root
issue lies with the order in which Terraform itself evaluates the
provider blocks vs. actual resources.

The example code in this book is able to work around these issues by
depending on the aws_eks_cluster_auth data source, but that’s a
bit of a hack. Therefore, in production code, I always recommend
deploying the EKS cluster in one module and deploying Kubernetes
apps in separate modules, after the cluster has been deployed.

Conclusion
At this point, you hopefully understand how to work with multiple
providers in Terraform code, and you can answer the three questions from
the beginning of this chapter:

What if you need to deploy to multiple AWS regions?

Use multiple provider blocks, each configured with a different
region and alias parameter.

What if you need to deploy to multiple AWS accounts?

Use multiple provider blocks, each configured with a different
assume_role block and an alias parameter.

What if you need to deploy to other clouds, such as Azure or GCP or
Kubernetes?

Use multiple provider blocks, each configured for its respective
cloud.



However, you’ve also seen that using multiple providers in one module is
typically an antipattern. So the real answer to these questions, especially in
real-world, production use cases, is to use each provider in a separate
module to keep different regions, accounts, and clouds isolated from one
another, and to limit your blast radius.

Let’s now move on to Chapter 8, where I’ll go over several other patterns
for how to build Terraform modules for real-world, production use cases—
the kind of modules you could bet your company on.

1  In fact, you could even skip the provider block and just add any resource or data source
from an official provider and Terraform will figure out which provider to use based on the
prefix: for example, if you add the aws_instance resource, Terraform will know to use the
AWS Provider based on the aws_ prefix.

2  See “Multi-Cloud is the Worst Practice”.

3  For a comparison of the different types of EKS worker nodes, see the Gruntwork blog.

4  Alternatively, you can use off-the-shelf production-grade Kubernetes modules, such as the
ones in the Gruntwork Infrastructure as Code Library.

https://oreil.ly/U78I0
https://oreil.ly/Tqj2E
https://oreil.ly/2AATd


Chapter 8. Production-Grade
Terraform Code

Building production-grade infrastructure is difficult. And stressful. And
time consuming. By production-grade infrastructure, I mean the kind of
infrastructure you’d bet your company on. You’re betting that your
infrastructure won’t fall over if traffic goes up, or lose your data if there’s
an outage, or allow that data to be compromised when hackers try to break
in—and if that bet doesn’t work out, your company might go out of
business. That’s what’s at stake when I refer to production-grade
infrastructure in this chapter.

I’ve had the opportunity to work with hundreds of companies, and based on
all of these experiences, here’s roughly how long you should expect your
next production-grade infrastructure project to take:

If you want to deploy a service fully managed by a third party, such as
running MySQL using the AWS Relational Database Service (RDS),
you can expect it to take you one to two weeks to get that service ready
for production.

If you want to run your own stateless distributed app, such as a cluster
of Node.js apps that don’t store any data locally (e.g., they store all
their data in RDS) running on top of an AWS Auto Scaling Group
(ASG), that will take roughly twice as long, or about two to four weeks
to get ready for production.

If you want to run your own stateful distributed app, such as an
Elasticsearch cluster that runs on top of an ASG and stores data on
local disks, that will be another order-of-magnitude increase, or about
two to four months to get ready for production.



If you want to build out your entire architecture, including all of your
apps, data stores, load balancers, monitoring, alerting, security, and so
on, that’s another order-of-magnitude (or two) increase, or about 6 to
36 months of work, with small companies typically being closer to six
months and larger companies typically taking several years.

Table 8-1 shows a summary of this data.

Table 8-1. How long it takes to build production-grade infrastructure from
scratch

Type of infrastructure Example Time estimate

Managed service Amazon RDS 1–2 weeks

Self-managed distributed system
(stateless)

A cluster of Node.js apps in an ASG 2–4 weeks

Self-managed distributed system
(stateful)

Elasticsearch cluster 2–4 months

Entire architecture Apps, data stores, load balancers,
monitoring, etc.

6–36 months

If you haven’t gone through the process of building out production-grade
infrastructure, you may be surprised by these numbers. I often hear
reactions like, “How can it possibly take that long?” or “I can deploy a
server on <cloud> in a few minutes. Surely it can’t take months to get the
rest done!” And all too often, from many an overconfident engineer, “I’m
sure those numbers apply to other people, but I will be able to get this done
in a few days.”

And yet, anyone who has gone through a major cloud migration or
assembled a brand-new infrastructure from scratch knows that these
numbers, if anything, are optimistic—a best-case scenario, really. If you
don’t have people on your team with deep expertise in building production-
grade infrastructure, or if your team is being pulled in a dozen different



directions and you can’t find the time to focus on it, it might take you
significantly longer.

In this chapter, I’ll go over why it takes so long to build production-grade
infrastructure, what production grade really means, and what patterns work
best for creating reusable, production-grade modules:

Why it takes so long to build production-grade infrastructure

The production-grade infrastructure checklist

Production-grade infrastructure modules

Small modules

Composable modules

Testable modules

Versioned modules

Beyond Terraform modules

EXAMPLE CODE
As a reminder, you can find all of the code examples in the book on GitHub.

Why It Takes So Long to Build Production-
Grade Infrastructure
Time estimates for software projects are notoriously inaccurate. Time
estimates for DevOps projects, doubly so. That quick tweak that you
thought would take five minutes takes up the entire day; the minor new
feature that you estimated at a day of work takes two weeks; the app that
you thought would be in production in two weeks is still not quite there six
months later. Infrastructure and DevOps projects, perhaps more than any
other type of software, are the ultimate examples of Hofstadter’s Law:1

https://github.com/brikis98/terraform-up-and-running-code


Hofstadter’s Law: It always takes longer than you expect, even when you
take into account Hofstadter’s Law.

I think there are three major reasons for this. The first reason is that
DevOps, as an industry, is still in the Stone Age. I don’t mean that as an
insult but rather in the sense that the industry is still in its infancy. The
terms “cloud computing,” “infrastructure as code,” and “DevOps” only
appeared in the mid- to late-2000s, and tools like Terraform, Docker,
Packer, and Kubernetes were all initially released in the mid- to late-2010s.
All of these tools and techniques are relatively new, and all of them are
changing rapidly. This means that they are not particularly mature and few
people have deep experience with them, so it’s no surprise that projects take
longer than expected.

The second reason is that DevOps seems to be particularly susceptible to
yak shaving. If you haven’t heard of “yak shaving” before, I assure you, this
is a term that you will grow to love (and hate). The best definition I’ve seen
of this term comes from a blog post by Seth Godin:

“I want to wax the car today.”

“Oops, the hose is still broken from the winter. I’ll need to buy a new one
at Home Depot.”

“But Home Depot is on the other side of the Tappan Zee bridge and
getting there without my EZPass is miserable because of the tolls.”

“But, wait! I could borrow my neighbor’s EZPass…”

“Bob won’t lend me his EZPass until I return the mooshi pillow my son
borrowed, though.”

“And we haven’t returned it because some of the stuffing fell out and we
need to get some yak hair to restuff it.”

And the next thing you know, you’re at the zoo, shaving a yak, all so you
can wax your car.
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Yak shaving consists of all the tiny, seemingly unrelated tasks you must do
before you can do the task you originally wanted to do. If you develop
software, and especially if you work in the DevOps industry, you’ve
probably seen this sort of thing a thousand times. You go to deploy a fix for
a small typo, only to uncover a bug in your app configuration. You try to
deploy a fix for the app configuration, but that’s blocked by a TLS
certificate issue. After spending hours on Stack Overflow, you try to roll out
a fix for the TLS issue, but that fails due to a problem with your
deployment system. You spend hours digging into that problem and find out
it’s due to an out-of-date Linux version. The next thing you know, you’re
updating the operating system on your entire fleet of servers, all so you can
deploy a “quick” one-character typo fix.

DevOps seems to be especially prone to these sorts of yak-shaving
incidents. In part, this is a consequence of the immaturity of DevOps
technologies and modern system design, which often involves lots of tight
coupling and duplication in the infrastructure. Every change you make in
the DevOps world is a bit like trying to pull out one wire from a box of
tangled wires—it just tends to pull up everything else in the box with it. In
part, this is because the term “DevOps” covers an astonishingly broad set of
topics: everything from build to deployment to security and so on.

This brings us to the third reason why DevOps work takes so long. The first
two reasons—DevOps is in the Stone Age and yak shaving—can be
classified as accidental complexity. Accidental complexity refers to the
problems imposed by the particular tools and processes you’ve chosen, as
opposed to essential complexity, which refers to the problems inherent in
whatever it is that you’re working on.  For example, if you’re using C++ to
write stock-trading algorithms, dealing with memory allocation bugs is
accidental complexity: had you picked a different programming language
with automatic memory management, you wouldn’t have this as a problem
at all. On the other hand, figuring out an algorithm that can beat the market
is essential complexity: you’d have to solve this problem no matter what
programming language you picked.
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The third reason why DevOps takes so long—the essential complexity of
this problem—is that there is a genuinely long checklist of tasks that you
must do to prepare infrastructure for production. The problem is that the
vast majority of developers don’t know about most of the items on the
checklist, so when they estimate a project, they forget about a huge number
of critical and time-consuming details. This checklist is the focus of the
next section.

The Production-Grade Infrastructure
Checklist
Here’s a fun experiment: go around your company and ask, “What are the
requirements for going to production?” In most companies, if you ask this
question to five people, you’ll get five different answers. One person will
mention the need for metrics and alerts; another will talk about capacity
planning and high availability; someone else will go on a rant about
automated tests and code reviews; yet another person will bring up
encryption, authentication, and server hardening; and if you’re lucky,
someone might remember to bring up data backups and log aggregation.
Most companies do not have a clear definition of the requirements for going
to production, which means each piece of infrastructure is deployed a little
differently and can be missing some critical functionality.

To help improve this situation, I’d like to share with you the Production-
Grade Infrastructure Checklist, as shown in Table 8-2. This list covers most
of the key items that you need to consider to deploy infrastructure to
production.



Table 8-2. The Production-Grade Infrastructure Checklist

Task Description Example tools

Install Install the software binaries and all dependencies. Bash, Ansible,
Docker, Packer

Configure Configure the software at runtime. Includes port settings,
TLS certs, service discovery, leaders, followers,
replication, etc.

Chef, Ansible,
Kubernetes

Provision Provision the infrastructure. Includes servers, load
balancers, network configuration, firewall settings, IAM
permissions, etc.

Terraform,
CloudFormation

Deploy Deploy the service on top of the infrastructure. Roll out
updates with no downtime. Includes blue-green, rolling,
and canary deployments.

ASG, Kubernetes,
ECS

High availability Withstand outages of individual processes, servers,
services, datacenters, and regions.

Multi-datacenter,
multi-region

Scalability Scale up and down in response to load. Scale
horizontally (more servers) and/or vertically (bigger
servers).

Auto scaling,
replication

Performance Optimize CPU, memory, disk, network, and GPU usage.
Includes query tuning, benchmarking, load testing, and
profiling.

Dynatrace,
Valgrind,
VisualVM

Networking Configure static and dynamic IPs, ports, service
discovery, firewalls, DNS, SSH access, and VPN access.

VPCs, firewalls,
Route 53

Security Encryption in transit (TLS) and on disk, authentication,
authorization, secrets management, server hardening.

ACM, Let’s
Encrypt, KMS,
Vault

Metrics Availability metrics, business metrics, app metrics,
server metrics, events, observability, tracing, and
alerting.

CloudWatch,
Datadog

Logs Rotate logs on disk. Aggregate log data to a central
location.

Elastic Stack,
Sumo Logic

Data backup Make backups of DBs, caches, and other data on a
scheduled basis. Replicate to separate region/account.

AWS Backup, RDS
snapshots



Task Description Example tools

Cost optimization Pick proper Instance types, use spot and reserved
Instances, use auto scaling, and clean up unused
resources.

Auto scaling,
Infracost

Documentation Document your code, architecture, and practices. Create
playbooks to respond to incidents.

READMEs, wikis,
Slack, IaC

Tests Write automated tests for your infrastructure code. Run
tests after every commit and nightly.

Terratest, tflint,
OPA, InSpec

Most developers are aware of the first few tasks: install, configure,
provision, and deploy. It’s all the ones that come after them that catch
people off guard. For example, did you think through the resilience of your
service and what happens if a server goes down? Or a load balancer goes
down? Or an entire datacenter goes dark? Networking tasks are also
notoriously tricky: setting up VPCs, VPNs, service discovery, and SSH
access are all essential tasks that can take months and yet are often entirely
left out of many project plans and time estimates. Security tasks, such as
encrypting data in transit using TLS, dealing with authentication, and
figuring out how to store secrets, are also often forgotten until the last
minute.

Every time you’re working on a new piece of infrastructure, go through this
checklist. Not every single piece of infrastructure needs every single item
on the list, but you should consciously and explicitly document which items
you’ve implemented, which ones you’ve decided to skip, and why.

Production-Grade Infrastructure Modules
Now that you know the list of tasks that you need to do for each piece of
infrastructure, let’s talk about the best practices for building reusable
modules to implement these tasks. Here are the topics I’ll cover:

Small modules

Composable modules



Testable modules

Versioned modules

Beyond Terraform modules

Small Modules
Developers who are new to Terraform, and IaC in general, often define all
of their infrastructure for all of their environments (dev, stage, prod, etc.) in
a single file or single module. As discussed in “State File Isolation”, this is
a bad idea. In fact, I’ll go even further and make the following claim: large
modules—modules that contain more than a few hundred lines of code or
that deploy more than a few closely related pieces of infrastructure—should
be considered harmful.

Here are just a few of the downsides of large modules:

Large modules are slow

If all of your infrastructure is defined in one Terraform module, running
any command will take a long time. I’ve seen modules grow so large
that terraform plan takes 20 minutes to run!

Large modules are insecure

If all your infrastructure is managed in a single large module, to change
anything, you need permissions to access everything. This means that
almost every user must be an admin, which goes against the principle of
least privilege.

Large modules are risky

If all your eggs are in one basket, a mistake anywhere could break
everything. You might be making a minor change to a frontend app in
staging, but due to a typo or running the wrong command, you delete
the production database.

Large modules are difficult to understand



The more code you have in one place, the more difficult it is for any one
person to understand it all. And when you don’t understand the
infrastructure you’re dealing with, you end up making costly mistakes.

Large modules are difficult to review

Reviewing a module that consists of several dozen lines of code is easy;
reviewing a module that consists of several thousand lines of code is
nearly impossible. Moreover, terraform plan not only takes
longer to run, but if the output of the plan command is several
thousand lines, no one will bother to read it. And that means no one will
notice that one little red line that means your database is being deleted.

Large modules are difficult to test

Testing infrastructure code is hard; testing a large amount of
infrastructure code is nearly impossible. I’ll come back to this point in
Chapter 9.

In short, you should build your code out of small modules that each do one
thing. This is not a new or controversial insight. You’ve probably heard it
many times before, albeit in slightly different contexts, such as this version
from Clean Code:

The first rule of functions is that they should be small. The second rule of
functions is that they should be smaller than that.

Imagine you were using a general-purpose programming language such as
Java or Python or Ruby, and you came across a single function that was
20,000 lines long—you would immediately know this is a code smell. The
better approach is to refactor this code into a number of small, standalone
functions that each do one thing. You should use the same strategy with
Terraform.

Imagine that you came across the architecture shown in Figure 8-1.
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Figure 8-1. A relatively complicated AWS architecture.

If this architecture was defined in a single Terraform module that was
20,000 lines long, you should immediately think of it as a code smell. The
better approach is to refactor this module into a number of small, standalone
modules that each do one thing, as shown in Figure 8-2.





Figure 8-2. A relatively complicated AWS architecture refactored into many small modules.

For example, consider the webserver-cluster module, which you last
worked on in Chapter 5. This module has become fairly large, as it is
handling three somewhat unrelated tasks:

Auto Scaling Group (ASG)

The webserver-cluster module deploys an ASG that can do a
zero-downtime, rolling deployment.

Application Load Balancer (ALB)

The webserver-cluster deploys an ALB.

Hello, World app

The webserver-cluster module also deploys a simple “Hello,
World” app.

Let’s refactor the code accordingly into three smaller modules:

modules/cluster/asg-rolling-deploy

A generic, reusable, standalone module for deploying an ASG that can
do a zero-downtime, rolling deployment.

modules/networking/alb

A generic, reusable, standalone module for deploying an ALB.

modules/services/hello-world-app

A module specifically for deploying the “Hello, World” app, which uses
the asg-rolling-deploy and alb modules under the hood.

Before getting started, make sure to run terraform destroy on any
webserver-cluster deployments you have from previous chapters.
After you do that, you can start putting together the asg-rolling-



deploy and alb modules. Create a new folder at modules/cluster/asg-
rolling-deploy, and move the following resources from
module/services/webserver-cluster/main.tf to modules/cluster/asg-rolling-
deploy/main.tf:

aws_launch_configuration

aws_autoscaling_group

aws_autoscaling_schedule (both of them)

aws_security_group (for the Instances but not for the ALB)

aws_security_group_rule (just the one rule for the Instances
but not those for the ALB)

aws_cloudwatch_metric_alarm (both of them)

Next, move the following variables from module/services/webserver-
cluster/variables.tf to modules/cluster/asg-rolling-deploy/variables.tf:

cluster_name

ami

instance_type

min_size

max_size

enable_autoscaling

custom_tags

server_port

Let’s now move on to the ALB module. Create a new folder at
modules/networking/alb, and move the following resources from
module/services/webserver-cluster/main.tf to
modules/networking/alb/main.tf:



aws_lb

aws_lb_listener

aws_security_group (the one for the ALB but not for the
Instances)

aws_security_group_rule (both of the rules for the ALB but
not the one for the Instances)

Create modules/networking/alb/variables.tf, and define a single variable
within:

variable "alb_name" {
  description = "The name to use for this ALB"
  type        = string
}

Use this variable as the name argument of the aws_lb resource:

resource "aws_lb" "example" {
  name               = var.alb_name
  load_balancer_type = "application"
  subnets            = data.aws_subnets.default.ids
  security_groups    = [aws_security_group.alb.id]
}

And the name argument of the aws_security_group resource:

resource "aws_security_group" "alb" {
  name = var.alb_name
}

This is a lot of code to shuffle around, so feel free to use the code examples
for this chapter from GitHub.

Composable Modules
You now have two small modules—asg-rolling-deploy and alb—
that each do one thing and do it well. How do you make them work
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together? How do you build modules that are reusable and composable?
This question is not unique to Terraform but is something programmers
have been thinking about for decades. To quote Doug McIlroy,  the original
developer of Unix pipes and a number of other Unix tools, including diff,
sort, join, and tr:

This is the Unix philosophy: Write programs that do one thing and do it
well. Write programs to work together.

One way to do this is through function composition, in which you can take
the outputs of one function and pass them as the inputs to another. For
example, if you had the following small functions in Ruby:

# Simple function to do addition
def add(x, y) 
  return x + y
end 
 
# Simple function to do subtraction
def sub(x, y) 
  return x - y
end 
 
# Simple function to do multiplication
def multiply(x, y) 
  return x * y
end

you can use function composition to put them together by taking the outputs
from add and sub and passing them as the inputs to multiply:

# Complex function that composes several simpler functions
def do_calculation(x, y) 
  return multiply(add(x, y), sub(x, y))
end

One of the main ways to make functions composable is to minimize side
effects: that is, where possible, avoid reading state from the outside world
and instead have it passed in via input parameters, and avoid writing state to
the outside world and instead return the result of your computations via
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output parameters. Minimizing side effects is one of the core tenets of
functional programming because it makes the code easier to reason about,
easier to test, and easier to reuse. The reuse story is particularly compelling,
since function composition allows you to gradually build up more
complicated functions by combining simpler functions.

Although you can’t avoid side effects when working with infrastructure
code, you can still follow the same basic principles in your Terraform
modules: pass everything in through input variables, return everything
through output variables, and build more complicated modules by
combining simpler modules.

Open up modules/cluster/asg-rolling-deploy/variables.tf, and add four new
input variables:

variable "subnet_ids" {
  description = "The subnet IDs to deploy to"
  type        = list(string)
} 
 
variable "target_group_arns" {
  description = "The ARNs of ELB target groups in which to 
register Instances"
  type        = list(string)
  default     = []
} 
 
variable "health_check_type" {
  description = "The type of health check to perform. Must be one 
of: EC2, ELB."
  type        = string
  default     = "EC2"
} 
 
variable "user_data" {
  description = "The User Data script to run in each Instance at 
boot"
  type        = string
  default     = null
}



The first variable, subnet_ids, tells the asg-rolling-deploy
module what subnets to deploy into. Whereas the webserver-cluster
module was hardcoded to deploy into the Default VPC and subnets, by
exposing the subnet_ids variable, you allow this module to be used
with any VPC or subnets. The next two variables, target_group_arns
and health_check_type, configure how the ASG integrates with load
balancers. Whereas the webserver-cluster module had a built-in
ALB, the asg-rolling-deploy module is meant to be a generic
module, so exposing the load-balancer settings as input variables allows
you to use the ASG with a wide variety of use cases; e.g., no load balancer,
one ALB, multiple NLBs, and so on.

Take these three new input variables and pass them through to the
aws_autoscaling_group resource in modules/cluster/asg-rolling-
deploy/main.tf, replacing the previously hardcoded settings that were
referencing resources (e.g., the ALB) and data sources (e.g.,
aws_subnets) that we didn’t copy into the asg-rolling-deploy
module:

resource "aws_autoscaling_group" "example" {
  name                 = var.cluster_name
  launch_configuration = aws_launch_configuration.example.name
  vpc_zone_identifier  = var.subnet_ids 
 
  # Configure integrations with a load balancer
  target_group_arns    = var.target_group_arns
  health_check_type    = var.health_check_type 
 
  min_size = var.min_size
  max_size = var.max_size 
 
  # (...)
}

The fourth variable, user_data, is for passing in a User Data script.
Whereas the webserver-cluster module had a hardcoded User Data
script that could only be used to deploy a “Hello, World” app, by taking in a
User Data script as an input variable, the asg-rolling-deploy



module can be used to deploy any app across an ASG. Pass this
user_data variable through to the aws_launch_configuration
resource:

resource "aws_launch_configuration" "example" {
  image_id        = var.ami
  instance_type   = var.instance_type
  security_groups = [aws_security_group.instance.id]
  user_data       = var.user_data 
 
  # Required when using a launch configuration with an auto 
scaling group. 
  lifecycle {
    create_before_destroy = true 
  }
}

You’ll also want to add a couple of useful output variables to
modules/cluster/asg-rolling-deploy/outputs.tf:

output "asg_name" {
  value       = aws_autoscaling_group.example.name
  description = "The name of the Auto Scaling Group"
} 
 
output "instance_security_group_id" {
  value       = aws_security_group.instance.id
  description = "The ID of the EC2 Instance Security Group"
}

Outputting this data makes the asg-rolling-deploy module even
more reusable, since consumers of the module can use these outputs to add
new behaviors, such as attaching custom rules to the security group.

For similar reasons, you should add several output variables to
modules/networking/alb/outputs.tf:

output "alb_dns_name" {
  value       = aws_lb.example.dns_name
  description = "The domain name of the load balancer"
} 
 



output "alb_http_listener_arn" {
  value       = aws_lb_listener.http.arn
  description = "The ARN of the HTTP listener"
} 
 
output "alb_security_group_id" {
  value       = aws_security_group.alb.id
  description = "The ALB Security Group ID"
}

You’ll see how to use these shortly.

The last step is to convert the webserver-cluster module into a
hello-world-app module that can deploy a “Hello, World” app using
the asg-rolling-deploy and alb modules. To do this, rename
module/services/webserver-cluster to module/services/hello-world-app.
After all the changes in the previous steps, you should have only the
following resources and data sources left in module/services/hello-world-
app/main.tf:

aws_lb_target_group

aws_lb_listener_rule

terraform_remote_state (for the DB)

aws_vpc

aws_subnets

Add the following variable to modules/services/hello-world-
app/variables.tf:

variable "environment" {
  description = "The name of the environment we're deploying to"
  type        = string
}

Now, add the asg-rolling-deploy module that you created earlier to
the hello-world-app module to deploy an ASG:



module "asg" {
  source = "../../cluster/asg-rolling-deploy" 
 
  cluster_name  = "hello-world-${var.environment}"
  ami           = var.ami
  instance_type = var.instance_type 
 
  user_data     = templatefile("${path.module}/user-data.sh", {
    server_port = var.server_port
    db_address  = data.terraform_remote_state.db.outputs.address
    db_port     = data.terraform_remote_state.db.outputs.port
    server_text = var.server_text 
  }) 
 
  min_size           = var.min_size
  max_size           = var.max_size
  enable_autoscaling = var.enable_autoscaling 
 
  subnet_ids        = data.aws_subnets.default.ids
  target_group_arns = [aws_lb_target_group.asg.arn]
  health_check_type = "ELB" 
 
  custom_tags = var.custom_tags
}

And add the alb module, also that you created earlier, to the hello-
world-app module to deploy an ALB:

module "alb" {
  source = "../../networking/alb" 
 
  alb_name   = "hello-world-${var.environment}"
  subnet_ids = data.aws_subnets.default.ids
}

Note the use of the input variable environment as a way to enforce a
naming convention, so all of your resources will be namespaced based on
the environment (e.g., hello-world-stage, hello-world-prod).
This code also sets the new subnet_ids, target_group_arns,
health_check_type, and user_data variables you added earlier to
appropriate values.



Next, you need to configure the ALB target group and listener rule for this
app. Update the aws_lb_target_group resource in
modules/services/hello-world-app/main.tf to use environment in its
name:

resource "aws_lb_target_group" "asg" {
  name     = "hello-world-${var.environment}"
  port     = var.server_port
  protocol = "HTTP"
  vpc_id   = data.aws_vpc.default.id 
 
  health_check {
    path                = "/"
    protocol            = "HTTP"
    matcher             = "200"
    interval            = 15
    timeout             = 3
    healthy_threshold   = 2
    unhealthy_threshold = 2 
  }
}

Now, update the listener_arn parameter of the
aws_lb_listener_rule resource to point at the
alb_http_listener_arn output of the ALB module:

resource "aws_lb_listener_rule" "asg" {
  listener_arn = module.alb.alb_http_listener_arn
  priority     = 100 
 
  condition { 
    path_pattern {
      values = ["*"] 
    } 
  } 
 
  action {
    type             = "forward"
    target_group_arn = aws_lb_target_group.asg.arn 
  }
}



Finally, pass through the important outputs from the asg-rolling-
deploy and alb modules as outputs of the hello-world-app
module:

output "alb_dns_name" {
  value       = module.alb.alb_dns_name
  description = "The domain name of the load balancer"
} 
 
output "asg_name" {
  value       = module.asg.asg_name
  description = "The name of the Auto Scaling Group"
} 
 
output "instance_security_group_id" {
  value       = module.asg.instance_security_group_id
  description = "The ID of the EC2 Instance Security Group"
}

This is function composition at work: you’re building up more complicated
behavior (a “Hello, World” app) from simpler parts (ASG and ALB
modules).

Testable Modules
At this stage, you’ve written a whole lot of code in the form of three
modules: asg-rolling-deploy, alb, and hello-world-app. The
next step is to check that your code actually works.

The modules you’ve created aren’t root modules meant to be deployed
directly. To deploy them, you need to write some Terraform code to plug in
the arguments you want, set up the provider, configure the backend,
and so on. A great way to do this is to create an examples folder that, as the
name suggests, shows examples of how to use your modules. Let’s try it
out.

Create examples/asg/main.tf with the following contents:

provider "aws" {
  region = "us-east-2"



} 
 
module "asg" {
  source = "../../modules/cluster/asg-rolling-deploy" 
 
  cluster_name  = var.cluster_name
  ami           = data.aws_ami.ubuntu.id
  instance_type = "t2.micro" 
 
  min_size           = 1
  max_size           = 1
  enable_autoscaling = false 
 
  subnet_ids        = data.aws_subnets.default.ids
} 
 
data "aws_vpc" "default" {
  default = true
} 
 
data "aws_subnets" "default" { 
  filter {
    name   = "vpc-id"
    values = [data.aws_vpc.default.id] 
  }
} 
 
data "aws_ami" "ubuntu" {
  most_recent = true
  owners      = ["099720109477"] # Canonical 
 
  filter {
    name   = "name"
    values = ["ubuntu/images/hvm-ssd/ubuntu-focal-20.04-amd64-
server-*"] 
  }
}

This bit of code uses the asg-rolling-deploy module to deploy an
ASG of size 1. Try it out by running terraform init and terraform
apply and checking to see that it runs without errors and actually spins up
an ASG. Now, add in a README.md file with these instructions, and
suddenly this tiny little example takes on a whole lot of power. In just
several files and lines of code, you now have the following:



A manual test harness

You can use this example code while working on the asg-rolling-
deploy module to repeatedly deploy and undeploy it by manually
running terraform apply and terraform destroy to check
that it works as you expect.

An automated test harness

As you will see in Chapter 9, this example code is also how you create
automated tests for your modules. I typically recommend that tests go
into the test folder.

Executable documentation

If you commit this example (including README.md) into version
control, other members of your team can find it, use it to understand
how your module works, and take the module for a spin without writing
a line of code. It’s both a way to teach the rest of your team and, if you
add automated tests around it, a way to ensure that your teaching
materials always work as expected.

Every Terraform module you have in the modules folder should have a
corresponding example in the examples folder. And every example in the
examples folder should have a corresponding test in the test folder. In fact,
you’ll most likely have multiple examples (and therefore multiple tests) for
each module, with each example showing different configurations and
permutations of how that module can be used. For example, you might want
to add other examples for the asg-rolling-deploy module that show
how to use it with auto scaling policies, how to hook up load balancers to it,
how to set custom tags, and so on.

Putting this all together, the folder structure for a typical modules repo will
look something like this:

modules 
 └ examples 

└



   └ alb 
   └ asg-rolling-deploy 
     └ one-instance 
     └ auto-scaling 
     └ with-load-balancer 
     └ custom-tags 
   └ hello-world-app 
   └ mysql 
 └ modules 
   └ alb 
   └ asg-rolling-deploy 
   └ hello-world-app 
   └ mysql 
 └ test 
   └ alb 
   └ asg-rolling-deploy 
   └ hello-world-app 
   └ mysql

As an exercise for the reader, I leave it up to you to add lots of examples for
the alb, asg-rolling-deploy, mysql, and hello-world-app
modules.

A great practice to follow when developing a new module is to write the
example code first, before you write even a line of module code. If you
begin with the implementation, it’s too easy to become lost in the
implementation details, and by the time you resurface and make it back to
the API, you end up with a module that is unintuitive and difficult to use.
On the other hand, if you begin with the example code, you’re free to think
through the ideal user experience and come up with a clean API for your
module and then work backward to the implementation. Because the
example code is the primary way of testing modules anyway, this is a form
of Test-Driven Development (TDD); I’ll dive more into this topic in
Chapter 9, which is entirely dedicated to testing.

In this section, I’ll focus on creating self-validating modules: that is,
modules that can check their own behavior to prevent certain types of bugs.
Terraform has two ways of doing this built in:

Validations



Preconditions and postconditions

Validations
As of Terraform 0.13, you can add validation blocks to any input variable to
perform checks that go beyond basic type constraints. For example, you can
add a validation block to the instance_type variable to ensure not
only that the value the user passes in is a string (which is enforced by the
type constraint) but that the string has one of two allowed values from the
AWS Free Tier:

variable "instance_type" {
  description = "The type of EC2 Instances to run (e.g. 
t2.micro)"
  type        = string 
 
  validation {
    condition     = contains(["t2.micro", "t3.micro"], 
var.instance_type)
    error_message = "Only free tier is allowed: t2.micro | 
t3.micro." 
  }
}

The way a validation block works is that the condition parameter
should evaluate to true if the value is valid and false otherwise. The
error_message parameter allows you to specify the message to show
the user if they pass in an invalid value. For example, here’s what happens
if you try to set instance_type to m4.large, which is not in the AWS
Free Tier:

$ terraform apply -var instance_type="m4.large" 
│ Error: Invalid value for variable 
│ 
│   on main.tf line 17: 
│    1: variable "instance_type" { 
│     ├──────────────── 
│     │ var.instance_type is "m4.large" 
│ 
│ Only free tier is allowed: t2.micro | t3.micro. 

│



│ 
│ This was checked by the validation rule at main.tf:21,3-13.

You can have multiple validation blocks in each variable to check
multiple conditions:

variable "min_size" {
  description = "The minimum number of EC2 Instances in the ASG"
  type        = number 
 
  validation {
    condition     = var.min_size > 0
    error_message = "ASGs can't be empty or we'll have an 
outage!" 
  } 
 
  validation {
    condition     = var.min_size <= 10
    error_message = "ASGs must have 10 or fewer instances to keep 
costs down." 
  }
}

Note that validation blocks have a major limitation: the condition
in a validation block can only reference the surrounding input variable.
If you try to reference any other input variables, local variables, resources,
or data sources, you will get an error. So while validation blocks are
useful for basic input sanitization, they can’t be used for anything more
complicated: for example, you can’t use them to do checks across multiple
variables (such as “exactly one of these two input variables must be set”) or
any kind of dynamic checks (such as checking that the AMI the user
requested uses the x86_64 architecture). To do these sorts of more dynamic
checks, you’ll need to use precondition and postcondition
blocks, as described next.

Preconditions and postconditions
As of Terraform 1.2, you can add precondition and postcondition
blocks to resources, data sources, and output variables to perform more
dynamic checks. The precondition blocks are for catching errors



before you run apply. For example, you could use a precondition
block to do a more robust check that the instance_type the user passes
in is in the AWS Free Tier. In the previous section, you did this check using
a validation block and a hardcoded list of instance types, but these
sorts of lists quickly go out of date. You can instead use the
instance_type_data data source to always get up-to-date information
from AWS:

data "aws_ec2_instance_type" "instance" {
  instance_type = var.instance_type
}

And then you can add a precondition block to the
aws_launch_configuration resource to check that this instance
type is eligible for the AWS Free Tier:

resource "aws_launch_configuration" "example" {
  image_id        = var.ami
  instance_type   = var.instance_type
  security_groups = [aws_security_group.instance.id]
  user_data       = var.user_data 
 
  # Required when using a launch configuration with an auto 
scaling group. 
  lifecycle {
    create_before_destroy = true 
    precondition {
      condition     = 
data.aws_ec2_instance_type.instance.free_tier_eligible
      error_message = "${var.instance_type} is not part of the 
AWS Free Tier!" 
    } 
  }
}

Just like validation blocks, precondition blocks (and
postcondition blocks, as you’ll see shortly) include a condition
that must evaluate to true or false and an error_message to show
the user if the condition evaluates to false. If you now try to run



apply with an instance type not in the AWS Free Tier, you’ll see your
error message:

$ terraform apply -var instance_type="m4.large" 
│ Error: Resource precondition failed 
│ 
│   on main.tf line 25, in resource "aws_launch_configuration" 
"example": 
│   18:    condition = 
data.aws_ec2_instance_type.instance.free_tier_eligible 
│     ├──────────────── 
│     │ data.aws_ec2_instance_type.instance.free_tier_eligible is 
false 
│ 
│ m4.large is not part of the AWS Free Tier!

The postcondition blocks are for catching errors after you run apply.
For example, you can add a postcondition block to the
aws_autoscaling_group resource to check that the ASG was
deployed across more than one Availability Zone (AZ), thereby ensuring
you can tolerate the failure of at least one AZ:

resource "aws_autoscaling_group" "example" {
  name                 = var.cluster_name
  launch_configuration = aws_launch_configuration.example.name
  vpc_zone_identifier  = var.subnet_ids 
 
  lifecycle { 
    postcondition {
      condition     = length(self.availability_zones) > 1
      error_message = "You must use more than one AZ for high 
availability!" 
    } 
  } 
 
  # (...)
}

Note the use of the self keyword in the condition parameter. Self
expressions use the following syntax:

self.<ATTRIBUTE>



You can use this special syntax solely in postcondition,
connection, and provisioner blocks (you’ll see examples of the
latter two later in this chapter) to refer to an output ATTRIBUTE of the
surrounding resource. If you tried to use the standard
aws_autoscaling_group.example.<ATTRIBUTE> syntax, you’d
get a circular dependency error, as resources can’t have references to
themselves, so the self expression is a workaround added specifically for
this sort of use case.

If you run apply on this module, Terraform will deploy the module, but
after, if it turns out that the subnets the user passed in via the subnet_ids
input variable were all in the same AZ, the postcondition block will
show an error. This way, you’ll always be warned if your ASG isn’t
configured for high availability.

When to use validations, preconditions, and postconditions
As you can see, validation, precondition, and postcondition
blocks are all similar, so when should you use each one?

Use validation blocks for basic input sanitization

Use validation blocks in all of your production-grade modules to
prevent users from passing invalid variables into your modules. The
goal is to catch basic input errors before any changes have been
deployed. Although precondition blocks are more powerful, you
should still use validation blocks for checking variables whenever
possible, as validation blocks are defined with the variables they
validate, which leads to a more readable and maintainable API.

Use precondition blocks for checking basic assumptions

Use precondition blocks in all of your production-grade modules
to check assumptions that must be true before any changes have been
deployed. This includes any checks on variables you can’t do with
validation blocks (such as checks that reference multiple variables
or data sources) as well as checks on resources and data sources. The



goal is to catch as many errors as early as you can, before those errors
can do any damage.

Use postcondition blocks for enforcing basic guarantees

Use postcondition blocks in all of your production-grade modules
to check guarantees about how your module behaves after changes have
been deployed. The goal is to give users of your module confidence that
your module will either do what it says when they run apply or exit
with an error. It also gives maintainers of that module a clearer signal of
what behaviors you want this module to enforce, so those aren’t
accidentally lost during a refactor.

Use automated testing tools for enforcing more advanced assumptions and
guarantees

validation, precondition, and postcondition blocks are
all useful tools, but they can only do basic checks. This is because you
can only use data sources, resources, and language constructs built into
Terraform to do these checks, and those are often not enough for more
advanced behavior. For example, if you built a module to deploy a web
service, you might want to add a check after deployment that the web
service is able to respond to HTTP requests. You could try to do this in
a postcondition block by making HTTP requests to the service
using Terraform’s http provider, but most deployments happen
asynchronously, so you may need to retry the HTTP request multiple
times, and there is no retry mechanism built into that provider.
Moreover, if you deployed an internal web service, it might not be
accessible over the public internet, so you’d need to connect to some
internal network or VPN first, which is also tricky to do in pure
Terraform code. Therefore, to do more robust checks, you’ll want to use
automated testing tools such as OPA and Terratest, both of which you’ll
see in Chapter 9.

Versioned Modules

https://oreil.ly/bHGak


There are two types of versioning you’ll want to think through with
modules:

Versioning of the module’s dependencies

Versioning of the module itself

Let’s start with versioning of the module’s dependencies. Your Terraform
code has three types of dependencies:

Terraform core

The version of the terraform binary you depend on

Providers

The version of each provider your code depends on, such as the aws
provider

Modules

The version of each module you depend on that are pulled in via
module blocks

As a general rule, you’ll want to practice versioning pinning with all of
your dependencies. That means that you pin each of these three types of
dependencies to a specific, fixed, known version. Deployments should be
predictable and repeatable: if the code didn’t change, then running apply
should always produce the same result, whether you run it today or three
months from now or three years from now. To make that happen, you need
to avoid pulling in new versions of dependencies accidentally. Instead,
version upgrades should always be an explicit, deliberate action that is
visible in the code you check into version control.

Let’s go through how to do version pinning for the three types of Terraform
dependencies.

To pin the version of the first type of dependency, your Terraform core
version, you can use the required_version argument in your code. At



a bare minimum, you should require a specific major version of Terraform:

terraform {
  # Require any 1.x version of Terraform
  required_version = ">= 1.0.0, < 2.0.0"
}

This is critical, because each major release of Terraform is backward
incompatible: e.g., the upgrade from 1.0.0 to 2.0.0 will likely include
breaking changes, so you don’t want to do it by accident. The preceding
code will allow you to use only 1.x.x versions of Terraform with that
module, so 1.0.0 and 1.2.3 will work, but if you try to use, perhaps
accidentally, 0.14.3 or 2.0.0, and run terraform apply, you
immediately get an error:

$ terraform apply 
 
Error: Unsupported Terraform Core version 
 
This configuration does not support Terraform version 0.14.3. To 
proceed, 
either choose another supported Terraform version or update the 
root module's 
version constraint. Version constraints are normally set for good 
reason, so 
updating the constraint may lead to other errors or unexpected 
behavior.

For production-grade code, you may want to pin not only the major version
but the minor and patch version too:

terraform {
  # Require Terraform at exactly version 1.2.3
  required_version = "1.2.3"
}

In the past, before the Terraform 1.0.0 release, this was absolutely required,
as every release of Terraform potentially included backward-incompatible
changes, including to the state file format: e.g., a state file written by
Terraform version 0.12.1 could not be read by Terraform version 0.12.0.



Fortunately, after the 1.0.0 release, this is no longer the case: as per the
officially published Terraform v1.0 Compatibility Promises, upgrades
between v1.x releases should require no changes to your code or
workflows.

That said, you might still not want to upgrade to a new version of Terraform
accidentally. New versions introduce new features, and if some of your
computers (developer workstations and CI servers) start using those
features but others are still on the old versions, you’ll run into issues.
Moreover, new versions of Terraform may have bugs, and you’ll want to
test that out in pre-production environments before trying it in production.
Therefore, while pinning the major version is the bare minimum, I also
recommend pinning the minor and patch version and applying Terraform
upgrades intentionally, carefully, and consistently throughout each
environment.

Note that, occasionally, you may have to use different versions of Terraform
within a single codebase. For example, perhaps you are testing out
Terraform 1.2.3 in the stage environment, while the prod environment is
still on Terraform 1.0.0. Having to deal with multiple Terraform versions,
whether on your own computer or on your CI servers, can be tricky.
Fortunately, the open source tool tfenv, the Terraform version manager,
makes this much easier.

At its most basic level, you can use tfenv to install and switch between
multiple versions of Terraform. For example, you can use the tfenv
install command to install a specific version of Terraform:

$ tfenv install 1.2.3 
Installing Terraform v1.2.3 
Downloading release tarball from 
https://releases.hashicorp.com/terraform/1.2.3/terraform_1.2.3_da
rwin_amd64.zip 
Archive:  tfenv_download.ZUS3Qn/terraform_1.2.3_darwin_amd64.zip 
  inflating: 
/opt/homebrew/Cellar/tfenv/2.2.2/versions/1.2.3/terraform 
Installation of terraform v1.2.3 successful.

https://oreil.ly/AwqpQ
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TFENV ON APPLE SILICON (M1, M2)
As of June 2022, tfenv did not install the proper version of Terraform on Apple
Silicon, such as Macs running M1 or M2 processors (see this open issue for details).
The workaround is to set the TFENV_ARCH environment variable to arm64:

$ export TFENV_ARCH=arm64 
$ tfenv install 1.2.3

You can list the versions you have installed using the list command:

$ tfenv list 
  1.2.3 
  1.1.4 
  1.1.0 
* 1.0.0 (set by /opt/homebrew/Cellar/tfenv/2.2.2/version)

And you can select the version of Terraform to use from that list using the
use command:

$ tfenv use 1.2.3 
Switching default version to v1.2.3 
Switching completed

These commands are all handy for working with multiple versions of
Terraform, but the real power of tfenv is its support for .terraform-
version files. tfenv will automatically look for a .terraform-version file in
the current folder, as well as all the parent folders, all the way up to the
project root—that is, the version control root (e.g., the folder with a .git
folder in it)—and if it finds that file, any terraform command you run
will automatically use the version defined in that file.

For example, if you wanted to try out Terraform 1.2.3 in the stage
environment, while sticking with Terraform 1.0.0 in the prod environment,
you could use the following folder structure:

https://oreil.ly/h2FVo


live 
 └ stage 
   └ vpc 
   └ mysql 
   └ frontend-app 
   └ .terraform-version 
 └ prod 
   └ vpc 
   └ mysql 
   └ frontend-app 
   └ .terraform-version

Inside of live/stage/.terraform-version, you would have the following:

1.2.3

And inside of live/prod/.terraform-version, you would have the following:

1.0.0

Now, any terraform command you run in stage or any subfolder will
automatically use Terraform 1.2.3. You can check this by running the
terraform version command:

$ cd stage/vpc 
$ terraform version 
Terraform v1.2.3

And similarly, any terraform command you run in prod will
automatically use Terraform 1.0.0:

$ cd prod/vpc 
$ terraform version 
Terraform v1.0.0

This works automatically on any developer workstation and in your CI
server so long as everyone has tfenv installed. If you’re a Terragrunt user,
tgswitch offers similar functionality to automatically pick the Terragrunt
version based on a .terragrunt-version file.

https://oreil.ly/nrmrn


Let’s now turn our attention to the second type of dependency in your
Terraform code: providers. As you saw in Chapter 7, to pin provider
versions, you can use the required_providers block :

terraform {
  required_version = ">= 1.0.0, < 2.0.0" 
 
  required_providers {
    aws = {
      source  = "hashicorp/aws"
      version = "~> 4.0" 
    } 
  }
}

This code pins the AWS Provider code to any 4.x version (the ~> 4.0
syntax is equivalent to >= 4.0, < 5.0). Again, the bare minimum is to
pin to a specific major version number to avoid accidentally pulling in
backward-incompatible changes. With Terraform 0.14.0 and above, you
don’t need to pin minor or patch versions for providers, as this happens
automatically due to the lock file. The first time you run terraform
init, Terraform creates a .terraform.lock.hcl file, which records the
following information:

The exact version of each provider you used

If you check the .terraform.lock.hcl file into version control (which you
should!), then in the future, if you run terraform init again, on
this computer or any other, Terraform will download the exact same
version of each provider. That’s why you don’t need to pin the minor
and patch version number in the required_providers block, as
that’s the default behavior anyway. If you want to explicitly upgrade a
provider version, you can update the version constraint in the
required_providers block and run terraform init -
upgrade. Terraform will download new providers that match your
version constraints and update the .terraform.lock.hcl file; you should
review those updates and commit them to version control.



The checksums for each provider

Terraform records the checksum of each provider it downloads, and on
subsequent runs of terraform init, it will show an error if the
checksum changed. This is a security measure to ensure someone can’t
swap out provider code with malicious code in the future. If the
provider is cryptographically signed (most official HashiCorp providers
are), Terraform will also validate the signature as an additional check
that the code can be trusted.

LOCK FILES WITH MULTIPLE OPERATING
SYSTEMS

By default, Terraform only records checksums for the platform you ran init on: for
example, if you ran init on Linux, then Terraform will only record the checksums for
Linux provider binaries in .terraform.lock.hcl. If you check that file in and, later on, you
run init on that code on a Mac, you’ll get an error, as the Mac checksums won’t be in
the .terraform.lock.hcl file. If your team works across multiple operating systems, you’ll
need to run the terraform providers lock command to record the checksums
for every platform you use:

terraform providers lock \ 
  -platform=windows_amd64 \ # 64-bit Windows 
  -platform=darwin_amd64 \  # 64-bit macOS 
  -platform=darwin_arm64 \  # 64-bit macOS (ARM) 
  -platform=linux_amd64     # 64-bit Linux

Finally, let’s now look at the third type of dependencies: modules. As
discussed in “Module Versioning”, I strongly recommend pinning module
versions by using source URLs (rather than local file paths) with the ref
parameter set to a Git tag:

  source = "git@github.com:foo/modules.git//services/hello-world-
app?ref=v0.0.5"

If you use these sorts of URLs, Terraform will always download the exact
same code for the module every time you run terraform init.



Now that you’ve seen how to version your code’s dependencies, let’s talk
about how to version the code itself. As you saw in “Module Versioning”,
you can version your code by using Git tags with semantic versioning:

$ git tag -a "v0.0.5" -m "Create new hello-world-app module" 
$ git push --follow-tags

For example, to deploy version v0.0.5 of your hello-world-app
module in the staging environment, put the following code into
live/stage/services/hello-world-app/main.tf:

provider "aws" {
  region = "us-east-2"
} 
 
module "hello_world_app" {
  # TODO: replace this with your own module URL and version!!
  source = "git@github.com:foo/modules.git//services/hello-world-
app?ref=v0.0.5" 
 
  server_text            = "New server text"
  environment            = "stage"
  db_remote_state_bucket = "(YOUR_BUCKET_NAME)"
  db_remote_state_key    = "stage/data-
stores/mysql/terraform.tfstate" 
 
  instance_type      = "t2.micro"
  min_size           = 2
  max_size           = 2
  enable_autoscaling = false
  ami                = data.aws_ami.ubuntu.id
} 
 
data "aws_ami" "ubuntu" {
  most_recent = true
  owners      = ["099720109477"] # Canonical 
 
  filter {
    name   = "name"
    values = ["ubuntu/images/hvm-ssd/ubuntu-focal-20.04-amd64-
server-*"] 
  }
}



Next, pass through the ALB DNS name as an output in
live/stage/services/hello-world-app/outputs.tf:

output "alb_dns_name" {
  value       = module.hello_world_app.alb_dns_name
  description = "The domain name of the load balancer"
}

Now you can deploy your versioned module by running terraform
init and terraform apply:

$ terraform apply 
 
(...) 
 
Apply complete! Resources: 13 added, 0 changed, 0 destroyed. 
 
Outputs: 
 
alb_dns_name = "hello-world-stage-477699288.us-east-
2.elb.amazonaws.com"

If that works well, you can then deploy the exact same version—and
therefore the exact same code—to other environments, including
production. If you ever encounter an issue, versioning also gives you the
option to roll back by deploying an older version.

Another option for releasing modules is to publish them in the Terraform
Registry. The Public Terraform Registry includes hundreds of reusable,
community-maintained, open source modules for AWS, Google Cloud,
Azure, and many other providers. There are a few requirements to publish a
module to the Public Terraform Registry:

The module must live in a public GitHub repo.

The repo must be named terraform-<PROVIDER>-<NAME>,
where PROVIDER is the provider the module is targeting (e.g., aws)
and NAME is the name of the module (e.g., rds).
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The module must follow a specific file structure, including defining
Terraform code in the root of the repo, providing a README.md, and
using the convention of main.tf, variables.tf, and outputs.tf as
filenames.

The repo must use Git tags with semantic versioning (x.y.z) for
releases.

If your module meets those requirements, you can share it with the world
by logging in to the Terraform Registry with your GitHub account and
using the web UI to publish the module. Once your modules are in the
Registry, your team can use a web UI to discover modules and learn how to
use them.

Terraform even supports a special syntax for consuming modules from the
Terraform Registry. Instead of long Git URLs with hard-to-spot ref
parameters, you can use a special shorter registry URL in the source
argument and specify the version via a separate version argument using
the following syntax:

module "<NAME>" {
  source  = "<OWNER>/<REPO>/<PROVIDER>"
  version = "<VERSION>" 
 
  # (...)
}

where NAME is the identifier to use for the module in your Terraform code,
OWNER is the owner of the GitHub repo (e.g., in
github.com/foo/bar, the owner is foo), REPO is the name of the
GitHub repo (e.g., in github.com/foo/bar, the repo is bar),
PROVIDER is the provider you’re targeting (e.g., aws), and VERSION is
the version of the module to use. Here’s an example of how to use an open
source RDS module from the Terraform Registry:

module "rds" {
  source  = "terraform-aws-modules/rds/aws"
  version = "4.4.0" 



 
  # (...)
}

If you are a customer of HashiCorp’s Terraform Cloud or Terraform
Enterprise, you can have this same experience with a Private Terraform
Registry—that is, a registry that lives in your private Git repos and is only
accessible to your team. This can be a great way to share modules within
your company.

Beyond Terraform Modules
Although this book is all about Terraform, to build out your entire
production-grade infrastructure, you’ll need to use other tools, too, such as
Docker, Packer, Chef, Puppet, and, of course, the duct tape, glue, and work
horse of the DevOps world, the trusty Bash script.

Most of this code can reside in the modules folder directly alongside your
Terraform code: e.g., you might have a modules/packer folder that contains
a Packer template and some Bash scripts you use to configure an AMI right
next to the modules/asg-rolling-deploy Terraform module you use to deploy
that AMI.

However, occasionally, you need to go further and run some non-Terraform
code (e.g., a script) directly from a Terraform module. Sometimes, this is to
integrate Terraform with another system (e.g., you’ve already used
Terraform to configure User Data scripts for execution on EC2 Instances);
other times, it’s to work around a limitation of Terraform, such as a missing
provider API, or the inability to implement complicated logic due to
Terraform’s declarative nature. If you search around, you can find a few
“escape hatches” within Terraform that make this possible:

Provisioners

Provisioners with null_resource

External data source



Let’s go through these one a time.

Provisioners
Terraform provisioners are used to execute scripts either on the local
machine or a remote machine when you run Terraform, typically to do the
work of bootstrapping, configuration management, or cleanup. There are
several different kinds of provisioners, including local-exec (execute a
script on the local machine), remote-exec (execute a script on a remote
resource), and file (copy files to a remote resource).

You can add provisioners to a resource by using a provisioner block.
For example, here is how you can use the local-exec provisioner to
execute a script on your local machine:

resource "aws_instance" "example" {
  ami           = data.aws_ami.ubuntu.id
  instance_type = "t2.micro" 
 
  provisioner "local-exec" {
    command = "echo \"Hello, World from $(uname -smp)\"" 
  }
}

When you run terraform apply on this code, it prints “Hello, World
from” and then the local operating system details using the uname
command:

$ terraform apply 
 
(...) 
 
aws_instance.example (local-exec): Hello, World from Darwin 
x86_64 i386 
 
(...) 
 
Apply complete! Resources: 1 added, 0 changed, 0 destroyed.
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Trying out a remote-exec provisioner is a little more complicated. To
execute code on a remote resource, such as an EC2 Instance, your
Terraform client must be able to do the following:

Communicate with the EC2 Instance over the network

You already know how to allow this with a security group.

Authenticate to the EC2 Instance

The remote-exec provisioner supports SSH and WinRM
connections.

Since the examples in this book have you launch Linux (Ubuntu) EC2
Instances, you’ll want to use SSH authentication. And that means you’ll
need to configure SSH keys. Let’s begin by creating a security group that
allows inbound connections to port 22, the default port for SSH:

resource "aws_security_group" "instance" { 
  ingress {
    from_port = 22
    to_port   = 22
    protocol  = "tcp" 
 
    # To make this example easy to try out, we allow all SSH 
connections.
    # In real world usage, you should lock this down to solely 
trusted IPs.
    cidr_blocks = ["0.0.0.0/0"] 
  }
}

With SSH keys, the normal process would be for you to generate an SSH
key pair on your computer, upload the public key to AWS, and store the
private key somewhere secure where your Terraform code can access it.
However, to make it easier for you to try out this code, you can use a
resource called tls_private_key to automatically generate a private
key:



# To make this example easy to try out, we generate a private key 
in Terraform.
# In real-world usage, you should manage SSH keys outside of 
Terraform.
resource "tls_private_key" "example" {
  algorithm = "RSA"
  rsa_bits  = 4096
}

This private key is stored in Terraform state, which is not great for
production use cases but is fine for this learning exercise. Next, upload the
public key to AWS using the aws_key_pair resource:

resource "aws_key_pair" "generated_key" {
  public_key = tls_private_key.example.public_key_openssh
}

Finally, let’s begin writing the code for the EC2 Instance:

data "aws_ami" "ubuntu" {
  most_recent = true
  owners      = ["099720109477"] # Canonical 
 
  filter {
    name   = "name"
    values = ["ubuntu/images/hvm-ssd/ubuntu-focal-20.04-amd64-
server-*"] 
  }
} 
 
resource "aws_instance" "example" {
  ami                    = data.aws_ami.ubuntu.id
  instance_type          = "t2.micro"
  vpc_security_group_ids = [aws_security_group.instance.id]
  key_name               = aws_key_pair.generated_key.key_name
}

Just about all of this code should be familiar to you: it’s using the
aws_ami data source to find Ubuntu AMI and using the aws_instance
resource to deploy that AMI on a t2.micro instance, associating that
instance with the security group you created earlier. The only new item is
the use of the key_name attribute in the aws_instance resource to



instruct AWS to associate your public key with this EC2 Instance. AWS
will add that public key to the server’s authorized_keys file, which will
allow you to SSH to that server with the corresponding private key.

Next, add the remote-exec provisioner to the aws_instance
resource:

resource "aws_instance" "example" {
  ami                    = data.aws_ami.ubuntu.id
  instance_type          = "t2.micro"
  vpc_security_group_ids = [aws_security_group.instance.id]
  key_name               = aws_key_pair.generated_key.key_name 
 
  provisioner "remote-exec" {
    inline = ["echo \"Hello, World from $(uname -smp)\""] 
  }
}

This looks nearly identical to the local-exec provisioner, except you
use an inline argument to pass a list of commands to execute, instead of
a single command argument. Finally, you need to configure Terraform to
use SSH to connect to this EC2 Instance when running the remote-exec
provisioner. You do this by using a connection block:

resource "aws_instance" "example" {
  ami                    = data.aws_ami.ubuntu.id
  instance_type          = "t2.micro"
  vpc_security_group_ids = [aws_security_group.instance.id]
  key_name               = aws_key_pair.generated_key.key_name 
 
  provisioner "remote-exec" {
    inline = ["echo \"Hello, World from $(uname -smp)\""] 
  } 
 
  connection {
    type        = "ssh"
    host        = self.public_ip
    user        = "ubuntu"
    private_key = tls_private_key.example.private_key_pem 
  }
}



This connection block tells Terraform to connect to the EC2 Instance’s
public IP address using SSH with "ubuntu" as the username (this is the
default username for the root user on Ubuntu AMIs) and the autogenerated
private key. If you run terraform apply on this code, you’ll see the
following:

$ terraform apply 
 
(...) 
 
aws_instance.example: Creating... 
aws_instance.example: Still creating... [10s elapsed] 
aws_instance.example: Still creating... [20s elapsed] 
aws_instance.example: Provisioning with 'remote-exec'... 
aws_instance.example (remote-exec): Connecting to remote host via 
SSH... 
aws_instance.example (remote-exec): Connecting to remote host via 
SSH... 
aws_instance.example (remote-exec): Connecting to remote host via 
SSH... 
 
(... repeats a few more times ...) 
 
aws_instance.example (remote-exec): Connecting to remote host via 
SSH... 
aws_instance.example (remote-exec): Connected! 
aws_instance.example (remote-exec): Hello, World from Linux 
x86_64 x86_64 
 
Apply complete! Resources: 4 added, 0 changed, 0 destroyed.

The remote-exec provisioner doesn’t know exactly when the EC2
Instance will be booted and ready to accept connections, so it will retry the
SSH connection multiple times until it succeeds or hits a timeout (the
default timeout is five minutes, but you can configure it). Eventually, the
connection succeeds, and you get a “Hello, World” from the server.

Note that, by default, when you specify a provisioner, it is a creation-time
provisioner, which means that it runs (a) during terraform apply, and
(b) only during the initial creation of a resource. The provisioner will not
run on any subsequent calls to terraform apply, so creation-time



provisioners are mainly useful for running initial bootstrap code. If you set
the when = destroy argument on a provisioner, it will be a destroy-
time provisioner, which will run after you run terraform destroy,
just before the resource is deleted.

You can specify multiple provisioners on the same resource and Terraform
will run them one at a time, in order, from top to bottom. You can use the
on_failure argument to instruct Terraform how to handle errors from
the provisioner: if set to "continue", Terraform will ignore the error and
continue with resource creation or destruction; if set to "abort",
Terraform will abort the creation or destruction.



PROVISIONERS VERSUS USER DATA
You’ve now seen two different ways to execute scripts on a server using
Terraform: one is to use a remote-exec provisioner, and the other is
to use a User Data script. I’ve generally found User Data to be the more
useful tool for the following reasons:

A remote-exec provisioner requires that you open up SSH or
WinRM access to your servers, which is more complicated to
manage (as you saw earlier with all the security group and SSH
key work) and less secure than User Data, which solely requires
AWS API access (which you must have anyway when using
Terraform to deploy to AWS).

You can use User Data scripts with ASGs, ensuring that all servers
in that ASG execute the script during boot, including servers
launched due to an auto scaling or auto recovery event.
Provisioners take effect only while Terraform is running and don’t
work with ASGs at all.

The User Data script can be seen in the EC2 console (select an
Instance, click Actions → Instance Settings → View/Change User
Data), and you can find its execution log on the EC2 Instance itself
(typically in /var/log/cloud-init*.log), both of which are useful for
debugging and neither of which is available with provisioners.

The only real advantage to using a provisioner to execute code on an
EC2 Instance is that User Data scripts are limited to a length of 16 KB,
whereas provisioner scripts can be arbitrarily long.

Provisioners with null_resource
Provisioners can be defined only within a resource, but sometimes, you
want to execute a provisioner without tying it to a specific resource. You
can do this using something called the null_resource, which acts just
like a normal Terraform resource, except that it doesn’t create anything. By



defining provisioners on the null_resource, you can run your scripts
as part of the Terraform lifecycle but without being attached to any “real”
resource:

resource "null_resource" "example" { 
  provisioner "local-exec" {
    command = "echo \"Hello, World from $(uname -smp)\"" 
  }
}

The null_resource even has a handy argument called triggers,
which takes in a map of keys and values. Whenever the values change, the
null_resource will be re-created, therefore forcing any provisioners
within it to be reexecuted. For example, if you want to execute a
provisioner within a null_resource every single time you run
terraform apply, you could use the uuid() built-in function, which
returns a new, randomly generated UUID each time it’s called, within the
triggers argument:

resource "null_resource" "example" {
  # Use UUID to force this null_resource to be recreated on every
  # call to 'terraform apply'
  triggers = {
    uuid = uuid() 
  } 
 
  provisioner "local-exec" {
    command = "echo \"Hello, World from $(uname -smp)\"" 
  }
}

Now, every time you call terraform apply, the local-exec
provisioner will execute:

$ terraform apply 
 
(...) 
 
null_resource.example (local-exec): Hello, World from Darwin 
x86_64 i386 



 
$ terraform apply 
 
null_resource.example (local-exec): Hello, World from Darwin 
x86_64 i386

External data source
Provisioners will typically be your go-to for executing scripts from
Terraform, but they aren’t always the correct fit. Sometimes, what you’re
really looking to do is execute a script to fetch some data and make that
data available within the Terraform code itself. To do this, you can use the
external data source, which allows an external command that
implements a specific protocol to act as a data source.

The protocol is as follows:

You can pass data from Terraform to the external program using the
query argument of the external data source. The external program
can read in these arguments as JSON from stdin.

The external program can pass data back to Terraform by writing
JSON to stdout. The rest of your Terraform code can then pull data out
of this JSON by using the result output attribute of the external data
source.

Here’s an example:

data "external" "echo" {
  program = ["bash", "-c", "cat /dev/stdin"] 
 
  query = {
    foo = "bar" 
  }
} 
 
output "echo" {
  value = data.external.echo.result
} 
 
output "echo_foo" {



  value = data.external.echo.result.foo
}

This example uses the external data source to execute a Bash script that
echoes back to stdout any data it receives on stdin. Therefore, any data you
pass in via the query argument should come back as is via the result
output attribute. Here’s what happens when you run terraform apply
on this code:

$ terraform apply 
 
(...) 
 
Apply complete! Resources: 0 added, 0 changed, 0 destroyed. 
 
Outputs: 
 
echo = { 
  "foo" = "bar" 
} 
echo_foo = "bar"

You can see that data.external.<NAME>.result contains the
JSON returned by the external program and that you can navigate within
that JSON using the syntax data.external.<NAME>.result.
<PATH> (e.g., data.external.echo.result.foo).

The external data source is a lovely escape hatch if you need to access
data in your Terraform code and there’s no existing data source that knows
how to retrieve that data. However, be conservative with your use of
external data sources and all of the other Terraform “escape hatches,”
since they make your code less portable and more brittle. For example, the
external data source code you just saw relies on Bash, which means you
won’t be able to deploy that Terraform module from Windows.

Conclusion



Now that you’ve seen all of the ingredients of creating production-grade
Terraform code, it’s time to put them together. The next time you begin to
work on a new module, use the following process:

1. Go through the production-grade infrastructure checklist in Table 8-2,
and explicitly identify the items you’ll be implementing and the items
you’ll be skipping. Use the results of this checklist, plus Table 8-1, to
come up with a time estimate for your boss.

2. Create an examples folder, and write the example code first, using it to
define the best user experience and cleanest API you can think of for
your modules. Create an example for each important permutation of
your module, and include enough documentation and reasonable
defaults to make the example as easy to deploy as possible.

3. Create a modules folder, and implement the API you came up with as a
collection of small, reusable, composable modules. Use a combination
of Terraform and other tools like Docker, Packer, and Bash to
implement these modules. Make sure to pin the versions for all your
dependencies, including Terraform core, your Terraform providers, and
Terraform modules you depend on.

4. Create a test folder, and write automated tests for each example.

That last bullet point—writing automated tests for your infrastructure code
—is what we’ll focus on next, as we move on to Chapter 9.
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Chapter 9. How to Test
Terraform Code

The DevOps world is full of fear: fear of downtime, fear of data loss, fear of
security breaches. Every time you go to make a change, you’re always
wondering, what will this affect? Will it work the same way in every
environment? Will this cause another outage? And if there is an outage,
how late into the night will you need to stay up to fix it this time? As
companies grow, there is more and more at stake, which makes the
deployment process even scarier, and even more error prone. Many
companies try to mitigate this risk by doing deployments less frequently,
but the result is that each deployment is larger and actually more prone to
breakage.

If you manage your infrastructure as code, you have a better way to
mitigate risk: tests. The goal of testing is to give you the confidence to
make changes. The key word here is confidence: no form of testing can
guarantee that your code is free of bugs, so it’s more of a game of
probability. If you can capture all of your infrastructure and deployment
processes as code, you can test that code in a pre-production environment,
and if it works there, there’s a high probability that when you use the exact
same code in production, it will work there, too. And in a world of fear and
uncertainty, high probability and high confidence go a long way.

In this chapter, I’ll go over the process of testing infrastructure code,
including both manual testing and automated testing, with the bulk of the
chapter spent on the latter:

Manual tests

Manual testing basics

Cleaning up after tests



Automated tests

Unit tests

Integration tests

End-to-end tests

Other testing approaches

EXAMPLE CODE
As a reminder, you can find all of the code examples in the book on GitHub.

Manual Tests
When thinking about how to test Terraform code, it can be helpful to draw
some parallels with how you would test code written in a general-purpose
programming language such as Ruby. Let’s say you were writing a simple
web server in Ruby in web-server.rb:

class WebServer < WEBrick::HTTPServlet::AbstractServlet 
  def do_GET(request, response) 
    case request.path 
    when "/" 
      response.status = 200 
      response['Content-Type'] = 'text/plain' 
      response.body = 'Hello, World' 
    when "/api" 
      response.status = 201 
      response['Content-Type'] = 'application/json' 
      response.body = '{"foo":"bar"}' 
    else 
      response.status = 404 
      response['Content-Type'] = 'text/plain' 
      response.body = 'Not Found' 
    end 
  end
end

https://github.com/brikis98/terraform-up-and-running-code


This code will send a 200 response with the body “Hello, World” for the /
URL, a 201 response with a JSON body for the /api URL, and a 404 for
all other URLs. How would you manually test this code? The typical
answer is to add a bit of code to run the web server on localhost:

# This will only run if this script was called directly from the 
CLI, but
# not if it was required from another file
if __FILE__ == $0 
  # Run the server on localhost at port 8000 
  server = WEBrick::HTTPServer.new :Port => 8000 
  server.mount '/', WebServer 
 
  # Shut down the server on CTRL+C 
  trap 'INT' do server.shutdown end 
 
  # Start the server 
  server.start
end

When you run this file from the CLI, it will start the web server on port
8000:

$ ruby web-server.rb 
[2019-05-25 14:11:52] INFO  WEBrick 1.3.1 
[2019-05-25 14:11:52] INFO  ruby 2.3.7 (2018-03-28) 
[universal.x86_64-darwin17] 
[2019-05-25 14:11:52] INFO  WEBrick::HTTPServer#start: pid=19767 
port=8000

You can test this server using a web browser or curl:

$ curl localhost:8000/ 
Hello, World

Manual Testing Basics
What is the equivalent of this sort of manual testing with Terraform code?
For example, from the previous chapters, you already have Terraform code



for deploying an ALB. Here’s a snippet from
modules/networking/alb/main.tf:

resource "aws_lb" "example" {
  name               = var.alb_name
  load_balancer_type = "application"
  subnets            = var.subnet_ids
  security_groups    = [aws_security_group.alb.id]
} 
 
resource "aws_lb_listener" "http" {
  load_balancer_arn = aws_lb.example.arn
  port              = local.http_port
  protocol          = "HTTP" 
 
  # By default, return a simple 404 page 
  default_action {
    type = "fixed-response" 
 
    fixed_response {
      content_type = "text/plain"
      message_body = "404: page not found"
      status_code  = 404 
    } 
  }
} 
 
resource "aws_security_group" "alb" {
  name = var.alb_name
} 
 
# (...)

If you compare this code to the Ruby code, one difference should be fairly
obvious: you can’t deploy AWS ALBs, target groups, listeners, security
groups, and all the other infrastructure on your own computer.

This brings us to key testing takeaway #1: when testing Terraform code, you
can’t use localhost. This applies to most IaC tools, not just Terraform. The
only practical way to do manual testing with Terraform is to deploy to a real
environment (i.e., deploy to AWS). In other words, the way you’ve been
manually running terraform apply and terraform destroy
throughout the book is how you do manual testing with Terraform.



This is one of the reasons why it’s essential to have easy-to-deploy
examples in the examples folder for each module, as described in Chapter 8.
The easiest way to manually test the alb module is to use the example
code you created for it in examples/alb:

provider "aws" {
  region = "us-east-2"
} 
 
module "alb" {
  source = "../../modules/networking/alb" 
 
  alb_name   = "terraform-up-and-running"
  subnet_ids = data.aws_subnets.default.ids
}

As you’ve done many times throughout the book, you deploy this example
code using terraform apply:

$ terraform apply 
 
(...) 
 
Apply complete! Resources: 5 added, 0 changed, 0 destroyed. 
 
Outputs: 
 
alb_dns_name = "hello-world-stage-477699288.us-east-
2.elb.amazonaws.com"

When the deployment is done, you can use a tool such as curl to test, for
example, that the default action of the ALB is to return a 404:

$ curl \ 
  -s \ 
  -o /dev/null \ 
  -w "%{http_code}" \ 
  hello-world-stage-477699288.us-east-2.elb.amazonaws.com 
 
404



VALIDATING INFRASTRUCTURE
The examples in this chapter use curl and HTTP requests to validate that the
infrastructure is working, because the infrastructure you’re testing includes a load
balancer that responds to HTTP requests. For other types of infrastructure, you’ll need
to replace curl and HTTP requests with a different form of validation. For example, if
your infrastructure code deploys a MySQL database, you’ll need to use a MySQL client
to validate it; if your infrastructure code deploys a VPN server, you’ll need to use a
VPN client to validate it; if your infrastructure code deploys a server that isn’t listening
for requests at all, you might need to SSH to the server and execute some commands
locally to test it; and so on. So although you can use the same basic test structure
described in this chapter with any type of infrastructure, the validation steps will change
depending on what you’re testing.

In short, when working with Terraform, every developer needs good
example code to test and a real deployment environment (e.g., an AWS
account) to use as an equivalent to localhost for running those tests. In the
process of manual testing, you’re likely to bring up and tear down a lot of
infrastructure, and likely make lots of mistakes along the way, so this
environment should be completely isolated from your other, more stable
environments, such as staging, and especially production.

Therefore, I strongly recommend that every team sets up an isolated
sandbox environment, in which developers can bring up and tear down any
infrastructure they want without worrying about affecting others. In fact, to
reduce the chances of conflicts between multiple developers (e.g., two
developers trying to create a load balancer with the same name), the gold
standard is that each developer gets their own completely isolated sandbox
environment. For example, if you’re using Terraform with AWS, the gold
standard is for each developer to have their own AWS account that they can
use to test anything they want.

Cleaning Up After Tests
Having many sandbox environments is essential for developer productivity,
but if you’re not careful, you can end up with infrastructure running all over

1



the place, cluttering up all of your environments, and costing you a lot of
money.

To keep costs from spiraling out of control, key testing takeaway #2 is:
regularly clean up your sandbox environments.

At a minimum, you should create a culture in which developers clean up
whatever they deploy when they are done testing by running terraform
destroy. Depending on your deployment environment, you might also be
able to find tools that you can run on a regular schedule (e.g., a cron job) to
automatically clean up unused or old resources, such as cloud-nuke and
aws-nuke.

For example, a common pattern is to run cloud-nuke as a cron job once
per day in each sandbox environment to delete all resources that are more
than 48 hours old, based on the assumption that any infrastructure a
developer fired up for manual testing is no longer necessary after a couple
of days:

$ cloud-nuke aws --older-than 48h

WARNING: LOTS OF CODING AHEAD
Writing automated tests for infrastructure code is not for the faint of heart. This
automated testing section is arguably the most complicated part of the book and does
not make for light reading. If you’re just skimming, feel free to skip this part. On the
other hand, if you really want to learn how to test your infrastructure code, roll up your
sleeves and get ready to write some code! You don’t need to run any of the Ruby code
(it’s just there to help build up your mental model), but you’ll want to write and run as
much Go code as you can.

Automated Tests
The idea with automated testing is to write test code that validates that your
real code behaves the way it should. As you’ll see in Chapter 10, you can
set up a CI server to run these tests after every single commit and then

https://bit.ly/2OIgM9r
https://bit.ly/2ZB8lOe


immediately revert or fix any commits that cause the tests to fail, thereby
always keeping your code in a working state.

Broadly speaking, there are three types of automated tests:

Unit tests

Unit tests verify the functionality of a single, small unit of code. The
definition of unit varies, but in a general-purpose programming
language, it’s typically a single function or class. Usually, any external
dependencies—for example, databases, web services, even the
filesystem—are replaced with test doubles or mocks that allow you to
finely control the behavior of those dependencies (e.g., by returning a
hardcoded response from a database mock) to test that your code
handles a variety of scenarios.

Integration tests

Integration tests verify that multiple units work together correctly. In a
general-purpose programming language, an integration test consists of
code that validates that several functions or classes work together
correctly. Integration tests typically use a mix of real dependencies and
mocks: for example, if you’re testing the part of your app that
communicates with the database, you might want to test it with a real
database, but mock out other dependencies, such as the app’s
authentication system.

End-to-end tests

End-to-end tests involve running your entire architecture—for example,
your apps, your data stores, your load balancers—and validating that
your system works as a whole. Usually, these tests are done from the
end-user’s perspective, such as using Selenium to automate interacting
with your product via a web browser. End-to-end tests typically use real
systems everywhere, without any mocks, in an architecture that mirrors
production (albeit with fewer/smaller servers to save money).



Each type of test serves a different purpose, and can catch different types of
bugs, so you’ll likely want to use a mix of all three types. The purpose of
unit tests is to have tests that run quickly so that you can get fast feedback
on your changes and validate a variety of different permutations to build up
confidence that the basic building blocks of your code (the individual units)
work as expected. But just because individual units work correctly in
isolation doesn’t mean that they will work correctly when combined, so you
need integration tests to ensure the basic building blocks fit together
correctly. And just because different parts of your system work correctly
doesn’t mean they will work correctly when deployed in the real world, so
you need end-to-end tests to validate that your code behaves as expected in
conditions similar to production.

Let’s now go through how to write each type of test for Terraform code.

Unit Tests
To understand how to write unit tests for Terraform code, it’s helpful to first
look at what it takes to write unit tests for a general-purpose programming
language such as Ruby. Take a look again at the Ruby web server code:

class WebServer < WEBrick::HTTPServlet::AbstractServlet 
  def do_GET(request, response) 
    case request.path 
    when "/" 
      response.status = 200 
      response['Content-Type'] = 'text/plain' 
      response.body = 'Hello, World' 
    when "/api" 
      response.status = 201 
      response['Content-Type'] = 'application/json' 
      response.body = '{"foo":"bar"}' 
    else 
      response.status = 404 
      response['Content-Type'] = 'text/plain' 
      response.body = 'Not Found' 
    end 
  end
end



Writing a unit test that calls the do_GET method directly is tricky, as you’d
have to either instantiate real WebServer, request, and response
objects, or create test doubles of them, both of which require a fair bit of
work. When you find it difficult to write unit tests, that’s often a code smell
and indicates that the code needs to be refactored. One way to refactor this
Ruby code to make unit testing easier is to extract the “handlers”—that is,
the code that handles the /, /api, and not found paths—into its own
Handlers class:

class Handlers 
  def handle(path) 
    case path 
    when "/" 
      [200, 'text/plain', 'Hello, World'] 
    when "/api" 
      [201, 'application/json', '{"foo":"bar"}'] 
    else 
      [404, 'text/plain', 'Not Found'] 
    end 
  end
end

There are two key properties to notice about this new Handlers class:

Simple values as inputs

The Handlers class does not depend on HTTPServer,
HTTPRequest, or HTTPResponse. Instead, all of its inputs are
simple values, such as the path of the URL, which is a string.

Simple values as outputs

Instead of setting values on a mutable HTTPResponse object (a side
effect), the methods in the Handlers class return the HTTP response
as a simple value (an array that contains the HTTP status code, content
type, and body).

Code that takes in simple values as inputs and returns simple values as
outputs is typically easier to understand, update, and test. Let’s first update



the WebServer class to use the new Handlers class to respond to
requests:

class WebServer < WEBrick::HTTPServlet::AbstractServlet 
  def do_GET(request, response) 
    handlers = Handlers.new 
    status_code, content_type, body = 
handlers.handle(request.path) 
 
    response.status = status_code 
    response['Content-Type'] = content_type 
    response.body = body 
  end
end

This code calls the handle method of the Handlers class and sends
back the status code, content type, and body returned by that method as an
HTTP response. As you can see, using the Handlers class is clean and
simple. This same property will make testing easy, too. Here are three unit
tests that check each endpoint in the Handlers class:

class TestWebServer < Test::Unit::TestCase 
  def initialize(test_method_name) 
    super(test_method_name) 
    @handlers = Handlers.new 
  end 
 
  def test_unit_hello 
    status_code, content_type, body = @handlers.handle("/") 
    assert_equal(200, status_code) 
    assert_equal('text/plain', content_type) 
    assert_equal('Hello, World', body) 
  end 
 
  def test_unit_api 
    status_code, content_type, body = @handlers.handle("/api") 
    assert_equal(201, status_code) 
    assert_equal('application/json', content_type) 
    assert_equal('{"foo":"bar"}', body) 
  end 
 
  def test_unit_404 
    status_code, content_type, body = @handlers.handle("/invalid-



path") 
    assert_equal(404, status_code) 
    assert_equal('text/plain', content_type) 
    assert_equal('Not Found', body) 
  end
end

And here’s how you run the tests:

$ ruby web-server-test.rb 
Loaded suite web-server-test 
Finished in 0.000572 seconds. 
------------------------------------------- 
3 tests, 9 assertions, 0 failures, 0 errors 
100% passed 
-------------------------------------------

In 0.0005272 seconds, you can now find out whether your web server code
works as expected. That’s the power of unit testing: a fast feedback loop
that helps you build confidence in your code.

Unit testing Terraform code
What is the equivalent of this sort of unit testing with Terraform code? The
first step is to identify what a “unit” is in the Terraform world. The closest
equivalent to a single function or class in Terraform is a single reusable
module such as the alb module you created in Chapter 8. How would you
test this module?

With Ruby, to write unit tests, you needed to refactor the code so you could
run it without complicated dependencies such as HTTPServer,
HTTPRequest, or HTTPResponse. If you think about what your
Terraform code is doing—making API calls to AWS to create the load
balancer, listeners, target groups, and so on—you’ll realize that 99% of
what this code is doing is communicating with complicated dependencies!
There’s no practical way to reduce the number of external dependencies to
zero, and even if you could, you’d effectively be left with no code to test.

That brings us to key testing takeaway #3: you cannot do pure unit testing
for Terraform code.

2



But don’t despair. You can still build confidence that your Terraform code
behaves as expected by writing automated tests that use your code to deploy
real infrastructure into a real environment (e.g., into a real AWS account).
In other words, unit tests for Terraform are really integration tests.
However, I prefer to still call them unit tests to emphasize that the goal is to
test a single unit (i.e., a single reusable module) to get feedback as quickly
as possible.

This means that the basic strategy for writing unit tests for Terraform is as
follows:

1. Create a small, standalone module.

2. Create an easy-to-deploy example for that module.

3. Run terraform apply to deploy the example into a real
environment.

4. Validate that what you just deployed works as expected. This step is
specific to the type of infrastructure you’re testing: for example, for an
ALB, you’d validate it by sending an HTTP request and checking that
you receive back the expected response.

5. Run terraform destroy at the end of the test to clean up.

In other words, you do exactly the same steps as you would when doing
manual testing, but you capture those steps as code. In fact, that’s a good
mental model for creating automated tests for your Terraform code: ask
yourself, “How would I have tested this manually to be confident it works?”
and then implement that test in code.

You can use any programming language you want to write the test code. In
this book, all of the tests are written in the Go programming language to
take advantage of an open source Go library called Terratest, which
supports testing a wide variety of infrastructure-as-code tools (e.g.,
Terraform, Packer, Docker, Helm) across a wide variety of environments
(e.g., AWS, Google Cloud, Kubernetes). Terratest is a bit like a Swiss Army
knife, with hundreds of tools built in that make it significantly easier to test

https://terratest.gruntwork.io/


infrastructure code, including first-class support for the test strategy just
described, where you terraform apply some code, validate that it
works, and then run terraform destroy at the end to clean up.

To use Terratest, you need to do the following:

1. Install Go (minimum version 1.13).

2. Create a folder for your test code: e.g., a folder named test.

3. Run go mod init <NAME> in the folder you just created, where
NAME is the name to use for this test suite, typically in the format
github.com/<ORG_NAME>/<PROJECT_NAME> (e.g., go mod
init github.com/brikis98/terraform-up-and-
running). This should create a go.mod file, which is used to track
the dependencies of your Go code.

As a quick sanity check that your environment is set up correctly, create
go_sanity_test.go in your new folder with the following contents:

package test 
 
import (
 "fmt"
 "testing"
) 
 
func TestGoIsWorking(t *testing.T) {
 fmt.Println()
 fmt.Println("If you see this text, it's working!")
 fmt.Println()
}

Run this test using the go test command:

go test -v

The -v flag means verbose, which ensures that the test always shows all
log output. You should see output that looks something like this:

https://golang.org/doc/install


=== RUN   TestGoIsWorking 
 
If you see this text, it's working! 
 
--- PASS: TestGoIsWorking (0.00s) 
PASS 
ok   github.com/brikis98/terraform-up-and-running-code 
0.192s

If that’s working, feel free to delete go_sanity_test.go, and move on to
writing a unit test for the alb module. Create alb_example_test.go in your
test folder with the following skeleton of a unit test:

package test 
 
import (
 "testing"
) 
 
func TestAlbExample(t *testing.T) {
}

The first step is to direct Terratest to where your Terraform code resides by
using the terraform.Options type:

package test 
 
import (
 "github.com/gruntwork-io/terratest/modules/terraform"
 "testing"
) 
 
func TestAlbExample(t *testing.T) {
 opts := &terraform.Options{
  // You should update this relative path to point 
at your alb
  // example directory!
  TerraformDir: "../examples/alb",
 }
}

Note that to test the alb module, you actually test the example code in
your examples folder (you should update the relative path in



TerraformDir to point to the folder where you created that example).

The next step in the automated test is to run terraform init and
terraform apply to deploy the code. Terratest has handy helpers for
doing that:

func TestAlbExample(t *testing.T) {
 opts := &terraform.Options{
  // You should update this relative path to point 
at your alb
  // example directory!
  TerraformDir: "../examples/alb",
 } 
 
 terraform.Init(t, opts)
 terraform.Apply(t, opts)
}

In fact, running init and apply is such a common operation with
Terratest that there is a convenient InitAndApply helper method that
does both in one command:

func TestAlbExample(t *testing.T) {
 opts := &terraform.Options{
  // You should update this relative path to point 
at your alb
  // example directory!
  TerraformDir: "../examples/alb",
 } 
 
 // Deploy the example
 terraform.InitAndApply(t, opts)
}

The preceding code is already a fairly useful unit test, since it will run
terraform init and terraform apply and fail the test if those
commands don’t complete successfully (e.g., due to a problem with your
Terraform code). However, you can go even further by making HTTP
requests to the deployed load balancer and checking that it returns the data
you expect. To do that, you need a way to get the domain name of the



deployed load balancer. Fortunately, that’s available as an output variable in
the alb example:

output "alb_dns_name" {
  value       = module.alb.alb_dns_name
  description = "The domain name of the load balancer"
}

Terratest has helpers built in to read outputs from your Terraform code:

func TestAlbExample(t *testing.T) {
 opts := &terraform.Options{
  // You should update this relative path to point 
at your alb
  // example directory!
  TerraformDir: "../examples/alb",
 } 
 
 // Deploy the example
 terraform.InitAndApply(t, opts) 
 
 // Get the URL of the ALB
 albDnsName := terraform.OutputRequired(t, opts, 
"alb_dns_name")
 url := fmt.Sprintf("http://%s", albDnsName)
}

The OutputRequired function returns the output of the given name, or
it fails the test if that output doesn’t exist or is empty. The preceding code
builds a URL from this output using the fmt.Sprintf function that’s
built into Go (don’t forget to import the fmt package). The next step is to
make some HTTP requests to this URL using the http_helper package
(make sure to add github.com/gruntwork-
io/terratest/modules/http-helper as an import):

func TestAlbExample(t *testing.T) {
 opts := &terraform.Options{
  // You should update this relative path to point 
at your alb
  // example directory!
  TerraformDir: "../examples/alb",



 } 
 
 // Deploy the example
 terraform.InitAndApply(t, opts) 
 
 // Get the URL of the ALB
 albDnsName := terraform.OutputRequired(t, opts, 
"alb_dns_name")
 url := fmt.Sprintf("http://%s", albDnsName) 
 
 // Test that the ALB's default action is working and 
returns a 404
 expectedStatus := 404
 expectedBody := "404: page not found"
 maxRetries := 10
 timeBetweenRetries := 10 * time.Second 
 
 http_helper.HttpGetWithRetry(
  t,
  url,
  nil,
  expectedStatus,
  expectedBody,
  maxRetries,
  timeBetweenRetries,
 )
}

The http_helper.HttpGetWithRetry method will make an HTTP
GET request to the URL you pass in and check that the response has the
expected status code and body. If it doesn’t, the method will retry up to the
specified maximum number of retries, with the specified amount of time
between retries. If it eventually achieves the expected response, the test will
pass; if the maximum number of retries is reached without the expected
response, the test will fail. This sort of retry logic is very common in
infrastructure testing, as there is usually a period of time between when
terraform apply finishes and when the deployed infrastructure is
completely ready (i.e., it takes time for health checks to pass, DNS updates
to propagate, and so on), and as you don’t know exactly how long that’ll
take, the best option is to retry until it works or you hit a timeout.



The last thing you need to do is to run terraform destroy at the end
of the test to clean up. As you can guess, there is a Terratest helper for this:
terraform.Destroy. However, if you call terraform.Destroy at
the very end of the test, if any of the code before that causes a test failure
(e.g., HttpGetWithRetry fails because the ALB is misconfigured), the
test code will exit before getting to terraform.Destroy, and the
infrastructure deployed for the test will never be cleaned up.

Therefore, you want to ensure that you always run
terraform.Destroy, even if the test fails. In many programming
languages, this is done with a try / finally or try / ensure construct,
but in Go, this is done by using the defer statement, which will guarantee
that the code you pass to it will be executed when the surrounding function
returns (no matter how that return happens):

func TestAlbExample(t *testing.T) {
 opts := &terraform.Options{
  // You should update this relative path to point 
at your alb
  // example directory!
  TerraformDir: "../examples/alb",
 } 
 
 // Clean up everything at the end of the test
 defer terraform.Destroy(t, opts) 
 
 // Deploy the example
 terraform.InitAndApply(t, opts) 
 
 // Get the URL of the ALB
 albDnsName := terraform.OutputRequired(t, opts, 
"alb_dns_name")
 url := fmt.Sprintf("http://%s", albDnsName) 
 
 // Test that the ALB's default action is working and 
returns a 404
 expectedStatus := 404
 expectedBody := "404: page not found"
 maxRetries := 10
 timeBetweenRetries := 10 * time.Second 
 
 http_helper.HttpGetWithRetry(



  t,
  url,
  nil,
  expectedStatus,
  expectedBody,
  maxRetries,
  timeBetweenRetries,
 )
}

Note that the defer is added early in the code, even before the call to
terraform .Ini tAndApply, to ensure that nothing can cause the test
to fail before getting to the defer statement and preventing it from
queueing up the call to terraform.Destroy.

OK, this unit test is finally ready to run!

TERRATEST VERSION
The test code in this book was written with Terratest v0.39.0. Terratest is still a pre-1.0.0
tool, so newer releases may contain backward-incompatible changes. To ensure the test
examples in this book work as written, I recommend installing Terratest specifically at
version v0.39.0, and not the latest version. To do that, go into go.mod and add the
following to the end of the file:

require github.com/gruntwork-io/terratest v0.39.0

Since this is a brand-new Go project, as a one-time action, you need to tell
Go to download dependencies (including Terratest). The easiest way to do
that at this stage is to run the following:

go mod tidy

This will download all your dependencies and create a go.sum file to lock
the exact versions you used.

Next, since this test deploys infrastructure to AWS, before running the test,
you need to authenticate to your AWS account as usual (see “Other AWS



Authentication Options”). You saw earlier in this chapter that you should do
manual testing in a sandbox account; for automated testing, this is even
more important, so I recommend authenticating to a totally separate
account. As your automated test suite grows, you might be spinning up
hundreds or thousands of resources in every test suite, so keeping them
isolated from everything else is essential.

I typically recommend that teams have a completely separate environment
(e.g., completely separate AWS account) just for automated testing—
separate even from the sandbox environments you use for manual testing.
That way, you can safely delete all resources that are more than a few hours
old in the testing environment, based on the assumption that no test will run
that long.

After you’ve authenticated to an AWS account that you can safely use for
testing, you can run the test, as follows:

$ go test -v -timeout 30m 
 
TestAlbExample 2019-05-26T13:29:32+01:00 command.go:53: 
Running command terraform with args [init -upgrade=false] 
 
(...) 
 
TestAlbExample 2019-05-26T13:29:33+01:00 command.go:53: 
Running command terraform with args [apply -input=false -
lock=false] 
 
(...) 
 
TestAlbExample 2019-05-26T13:32:06+01:00 command.go:121: 
Apply complete! Resources: 5 added, 0 changed, 0 destroyed. 
 
(...) 
 
TestAlbExample 2019-05-26T13:32:06+01:00 command.go:53: 
Running command terraform with args [output -no-color 
alb_dns_name] 
 
(...) 
 
TestAlbExample 2019-05-26T13:38:32+01:00 http_helper.go:27: 
Making an HTTP GET call to URL 



http://terraform-up-and-running-1892693519.us-east-
2.elb.amazonaws.com 
 
(...) 
 
TestAlbExample 2019-05-26T13:38:32+01:00 command.go:53: 
Running command terraform with args 
[destroy -auto-approve -input=false -lock=false] 
 
(...) 
 
TestAlbExample 2019-05-26T13:39:16+01:00 command.go:121: 
Destroy complete! Resources: 5 destroyed. 
 
(...) 
 
PASS 
ok   terraform-up-and-running 229.492s

Note the use of the -timeout 30m argument with go test. By default,
Go imposes a time limit of 10 minutes for tests, after which it forcibly kills
the test run, not only causing the tests to fail but also preventing the cleanup
code (i.e., terraform destroy) from running. This ALB test should
take closer to five minutes, but whenever running a Go test that deploys real
infrastructure, it’s safer to set an extra-long timeout to avoid the test being
killed partway through and leaving all sorts of infrastructure still running.

The test will produce a lot of log output, but if you read through it carefully,
you should be able to spot all of the key stages of the test:

1. Running terraform init

2. Running terraform apply

3. Reading output variables using terraform output

4. Repeatedly making HTTP requests to the ALB

5. Running terraform destroy

It’s nowhere near as fast as the Ruby unit tests, but in less than five minutes,
you can now automatically find out whether your alb module works as



expected. This is about as fast of a feedback loop as you can get with
infrastructure in AWS, and it should give you a lot of confidence that your
code works as expected.

Dependency injection
Let’s now see what it would take to add a unit test for some slightly more
complicated code. Going back to the Ruby web server example once more,
consider what would happen if you needed to add a new /web-service
endpoint that made HTTP calls to an external dependency:

class Handlers 
  def handle(path) 
    case path 
    when "/" 
      [200, 'text/plain', 'Hello, World'] 
    when "/api" 
      [201, 'application/json', '{"foo":"bar"}'] 
    when "/web-service" 
      # New endpoint that calls a web service 
      uri = URI("http://www.example.org") 
      response = Net::HTTP.get_response(uri) 
      [response.code.to_i, response['Content-Type'], 
response.body] 
    else 
      [404, 'text/plain', 'Not Found'] 
    end 
  end
end

The updated Handlers class now handles the /web-service URL by
making an HTTP GET to example.org and proxying the response.
When you curl this endpoint, you get the following:

$ curl localhost:8000/web-service 
 
<!doctype html> 
<html> 
<head> 
    <title>Example Domain</title> 
    <-- (...) --> 
</head> 



<body> 
<div> 
    <h1>Example Domain</h1> 
    <p> 
      This domain is established to be used for illustrative 
      examples in documents. You may use this domain in 
      examples without prior coordination or asking for 
permission. 
    </p> 
    <!-- (...) --> 
</div> 
</body> 
</html>

How would you add a unit test for this new method? If you tried to test the
code as is, your unit tests would be subject to the behavior of an external
dependency (in this case, example.org). This has a number of
downsides:

If that dependency has an outage, your tests will fail, even though
there’s nothing wrong with your code.

If that dependency changed its behavior from time to time (e.g.,
returned a different response body), your tests would fail from time to
time, and you’d need to constantly keep updating the test code, even
though there’s nothing wrong with the implementation.

If that dependency were slow, your tests would be slow, which negates
one of the main benefits of unit tests, the fast feedback loop.

If you wanted to test that your code handles various corner cases based
on how that dependency behaves (e.g., does the code handle
redirects?), you’d have no way to do it without control of that external
dependency.

Although working with real dependencies might make sense for integration
and end-to-end tests, with unit tests, you should try to minimize external
dependencies as much as possible. The typical strategy for doing this is
dependency injection, in which you make it possible to pass in (or “inject”)



external dependencies from outside your code, rather than hardcoding them
within your code.

For example, the Handlers class shouldn’t need to deal with all of the
details of how to call a web service. Instead, you can extract that logic into
a separate WebService class:

class WebService 
  def initialize(url) 
    @uri = URI(url) 
  end 
 
  def proxy 
    response = Net::HTTP.get_response(@uri) 
    [response.code.to_i, response['Content-Type'], response.body] 
  end
end

This class takes a URL as an input and exposes a proxy method to proxy
the HTTP GET response from that URL. You can then update the
Handlers class to take a WebService instance as an input and use that
instance in the web_service method:

class Handlers 
  def initialize(web_service) 
    @web_service = web_service 
  end 
 
  def handle(path) 
    case path 
    when "/" 
      [200, 'text/plain', 'Hello, World'] 
    when "/api" 
      [201, 'application/json', '{"foo":"bar"}'] 
    when "/web-service" 
      # New endpoint that calls a web service 
      @web_service.proxy 
    else 
      [404, 'text/plain', 'Not Found'] 
    end 
  end
end



Now, in your implementation code, you can inject a real WebService
instance that makes HTTP calls to example.org:

class WebServer < WEBrick::HTTPServlet::AbstractServlet 
  def do_GET(request, response) 
    web_service = WebService.new("http://www.example.org") 
    handlers = Handlers.new(web_service) 
 
    status_code, content_type, body = 
handlers.handle(request.path) 
 
    response.status = status_code 
    response['Content-Type'] = content_type 
    response.body = body 
  end
end

In your test code, you can create a mock version of the WebService class
that allows you to specify a mock response to return:

class MockWebService 
  def initialize(response) 
    @response = response 
  end 
 
  def proxy 
    @response 
  end
end

And now you can create an instance of this MockWebService class and
inject it into the Handlers class in your unit tests:

  def test_unit_web_service 
    expected_status = 200 
    expected_content_type = 'text/html' 
    expected_body = 'mock example.org' 
    mock_response = [expected_status, expected_content_type, 
expected_body] 
 
    mock_web_service = MockWebService.new(mock_response) 
    handlers = Handlers.new(mock_web_service) 
 



    status_code, content_type, body = handlers.handle("/web-
service") 
    assert_equal(expected_status, status_code) 
    assert_equal(expected_content_type, content_type) 
    assert_equal(expected_body, body) 
  end

Rerun the tests to make sure it all still works:

$ ruby web-server-test.rb 
Loaded suite web-server-test 
Started 
... 
 
Finished in 0.000645 seconds. 
-------------------------------------------- 
4 tests, 12 assertions, 0 failures, 0 errors 
100% passed 
--------------------------------------------

Fantastic. Using dependency injection to minimize external dependencies
allows you to write fast, reliable tests and check all the various corner cases.
And since the three test cases you added earlier are still passing, you can be
confident that your refactoring hasn’t broken anything.

Let’s now turn our attention back to Terraform and see what dependency
injection looks like with Terraform modules, starting with the hello-
world-app module. If you haven’t already, the first step is to create an
easy-to-deploy example for it in the examples folder:

provider "aws" {
  region = "us-east-2"
} 
 
module "hello_world_app" {
  source = "../../../modules/services/hello-world-app" 
 
  server_text = "Hello, World"
  environment = "example" 
 
  db_remote_state_bucket = "(YOUR_BUCKET_NAME)"
  db_remote_state_key    = "examples/terraform.tfstate" 
 



  instance_type      = "t2.micro"
  min_size           = 2
  max_size           = 2
  enable_autoscaling = false
  ami                = data.aws_ami.ubuntu.id
} 
 
data "aws_ami" "ubuntu" {
  most_recent = true
  owners      = ["099720109477"] # Canonical 
 
  filter {
    name   = "name"
    values = ["ubuntu/images/hvm-ssd/ubuntu-focal-20.04-amd64-
server-*"] 
  }
}

The dependency problem becomes apparent when you spot the parameters
db_remote_state_bucket and db_remote_state_key: the
hello-world-app module assumes that you’ve already deployed the
mysql module and requires that you pass in the details of the S3 bucket
where the mysql module is storing state using these two parameters. The
goal here is to create a unit test for the hello-world-app module, and
although a pure unit test with 0 external dependencies isn’t possible with
Terraform, it’s still a good idea to minimize external dependencies
whenever possible.

One of the first steps with minimizing dependencies is to make it clearer
what dependencies your module has. A file-naming convention you might
want to adopt is to move all of the data sources and resources that represent
external dependencies into a separate dependencies.tf file. For example,
here’s what modules/services/hello-world-app/dependencies.tf would look
like:

data "terraform_remote_state" "db" {
  backend = "s3" 
 
  config = {
    bucket = var.db_remote_state_bucket
    key    = var.db_remote_state_key



    region = "us-east-2" 
  }
} 
 
data "aws_vpc" "default" {
  default = true
} 
 
data "aws_subnets" "default" { 
  filter {
    name   = "vpc-id"
    values = [data.aws_vpc.default.id] 
  }
}

This convention makes it easier for users of your code to know, at a glance,
what this code depends on in the outside world. In the case of the hello-
world-app module, you can quickly see that it depends on a database,
VPC, and subnets. So, how can you inject these dependencies from outside
the module so that you can replace them at test time? You already know the
answer to this: input variables.

For each of these dependencies, you should add a new input variable in
modules/services/hello-world-app/variables.tf:

variable "vpc_id" {
  description = "The ID of the VPC to deploy into"
  type        = string
  default     = null
} 
 
variable "subnet_ids" {
  description = "The IDs of the subnets to deploy into"
  type        = list(string)
  default     = null
} 
 
variable "mysql_config" {
  description = "The config for the MySQL DB"
  type        = object({
    address = string
    port    = number 
  })



  default     = null
}

There’s now an input variable for the VPC ID, subnet IDs, and MySQL
config. Each variable specifies a default, so they are optional variables
that the user can set to something custom or omit to get the default
value. The default for each variable is null.

Note that the mysql_config variable uses the object type constructor
to create a nested type with address and port keys. This type is
intentionally designed to match the output types of the mysql module:

output "address" {
  value       = aws_db_instance.example.address
  description = "Connect to the database at this endpoint"
} 
 
output "port" {
  value       = aws_db_instance.example.port
  description = "The port the database is listening on"
}

One of the advantages of doing this is that, as soon as the refactor is
complete, one of the ways you’ll be able to use the hello-world-app
and mysql modules together is as follows:

module "hello_world_app" {
  source = "../../../modules/services/hello-world-app" 
 
  server_text            = "Hello, World"
  environment            = "example" 
 
  # Pass all the outputs from the mysql module straight through!
  mysql_config = module.mysql 
 
  instance_type      = "t2.micro"
  min_size           = 2
  max_size           = 2
  enable_autoscaling = false
  ami                = data.aws_ami.ubuntu.id
} 
 



module "mysql" {
  source = "../../../modules/data-stores/mysql" 
 
  db_name     = var.db_name
  db_username = var.db_username
  db_password = var.db_password
}

Because the type of mysql_config matches the type of the mysql
module outputs, you can pass them all straight through in one line. And if
the types are ever changed and no longer match, Terraform will give you an
error right away so that you know to update them. This is not only function
composition at work but also type-safe function composition.

But before that can work, you’ll need to finish refactoring the code.
Because the MySQL configuration can be passed in as an input, this means
that the db_remote_state_bucket and db_remote_state_key
variables should now be optional, so set their default values to null:

variable "db_remote_state_bucket" {
  description = "The name of the S3 bucket for the DB's Terraform 
state"
  type        = string
  default     = null
} 
 
variable "db_remote_state_key" {
  description = "The path in the S3 bucket for the DB's Terraform 
state"
  type        = string
  default     = null
}

Next, use the count parameter to optionally create the three data sources
in modules/services/hello-world-app/dependencies.tf based on whether the
corresponding input variable is set to null:

data "terraform_remote_state" "db" {
  count = var.mysql_config == null ? 1 : 0 
 
  backend = "s3" 



 
  config = {
    bucket = var.db_remote_state_bucket
    key    = var.db_remote_state_key
    region = "us-east-2" 
  }
} 
 
data "aws_vpc" "default" {
  count   = var.vpc_id == null ? 1 : 0
  default = true
} 
 
data "aws_subnets" "default" {
  count = var.subnet_ids == null ? 1 : 0 
  filter {
    name   = "vpc-id"
    values = [data.aws_vpc.default.id] 
  }
}

Now you need to update any references to these data sources to
conditionally use either the input variable or the data source. Let’s capture
these as local values:

locals {
  mysql_config = (
    var.mysql_config == null 
      ? data.terraform_remote_state.db[0].outputs 
      : var.mysql_config 
  ) 
 
  vpc_id = (
    var.vpc_id == null 
      ? data.aws_vpc.default[0].id 
      : var.vpc_id 
  ) 
 
  subnet_ids = (
    var.subnet_ids == null 
      ? data.aws_subnets.default[0].ids 
      : var.subnet_ids 
  )
}



Note that because the data sources use the count parameters, they are now
arrays, so any time you reference them, you need to use array lookup syntax
(i.e., [0]). Go through the code, and anywhere you find a reference to one
of these data sources, replace it with a reference to one of the local variables
you just added instead. Start by updating the aws_subnets data source to
use local.vpc_id:

data "aws_subnets" "default" {
  count = var.subnet_ids == null ? 1 : 0 
  filter {
    name   = "vpc-id"
    values = [local.vpc_id] 
  }
}

Then, set the subnet_ids parameter of the alb module to
local.subnet_ids:

module "alb" {
  source = "../../networking/alb" 
 
  alb_name   = "hello-world-${var.environment}"
  subnet_ids = local.subnet_ids
}

In the asg module, make the following updates: set the subnet_ids
parameter to local.subnet_ids, and in the user_data variables,
update db_address and db_port to read data from
local.mysql_config.

module "asg" {
  source = "../../cluster/asg-rolling-deploy" 
 
  cluster_name  = "hello-world-${var.environment}"
  ami           = var.ami
  instance_type = var.instance_type 
 
  user_data = templatefile("${path.module}/user-data.sh", {
    server_port = var.server_port
    db_address  = local.mysql_config.address



    db_port     = local.mysql_config.port
    server_text = var.server_text 
  }) 
 
  min_size           = var.min_size
  max_size           = var.max_size
  enable_autoscaling = var.enable_autoscaling 
 
  subnet_ids        = local.subnet_ids
  target_group_arns = [aws_lb_target_group.asg.arn]
  health_check_type = "ELB" 
 
  custom_tags = var.custom_tags
}

Finally, update the vpc_id parameter of the aws_lb_target_group
to use local.vpc_id:

resource "aws_lb_target_group" "asg" {
  name     = "hello-world-${var.environment}"
  port     = var.server_port
  protocol = "HTTP"
  vpc_id   = local.vpc_id 
 
  health_check {
    path                = "/"
    protocol            = "HTTP"
    matcher             = "200"
    interval            = 15
    timeout             = 3
    healthy_threshold   = 2
    unhealthy_threshold = 2 
  }
}

With these updates, you can now choose to inject the VPC ID, subnet IDs,
and/or MySQL config parameters into the hello-world-app module,
or omit any of those parameters, and the module will use an appropriate
data source to fetch those values by itself. Let’s update the “Hello, World”
app example to allow the MySQL config to be injected but omit the VPC
ID and subnet ID parameters because using the default VPC is good enough



for testing. Add a new input variable to examples/hello-world-
app/variables.tf:

variable "mysql_config" {
  description = "The config for the MySQL DB" 
 
  type = object({
    address = string
    port    = number 
  }) 
 
  default = {
    address = "mock-mysql-address"
    port    = 12345 
  }
}

Pass this variable through to the hello-world-app module in
examples/hello-world-app/main.tf:

module "hello_world_app" {
  source = "../../../modules/services/hello-world-app" 
 
  server_text = "Hello, World"
  environment = "example" 
 
  mysql_config = var.mysql_config 
 
  instance_type      = "t2.micro"
  min_size           = 2
  max_size           = 2
  enable_autoscaling = false
  ami                = data.aws_ami.ubuntu.id
}

You can now set this mysql_config variable in a unit test to any value
you want. Create a unit test in test/hello_world_app_example_test.go with
the following contents:

func TestHelloWorldAppExample(t *testing.T) {
 opts := &terraform.Options{
  // You should update this relative path to point 
at your



  // hello-world-app example directory!
  TerraformDir: "../examples/hello-world-
app/standalone",
 } 
 
 // Clean up everything at the end of the test
 defer terraform.Destroy(t, opts)
 terraform.InitAndApply(t, opts) 
 
 albDnsName := terraform.OutputRequired(t, opts, 
"alb_dns_name")
 url := fmt.Sprintf("http://%s", albDnsName) 
 
 maxRetries := 10
 timeBetweenRetries := 10 * time.Second 
 
 http_helper.HttpGetWithRetryWithCustomValidation(
  t,
  url,
  nil,
  maxRetries,
  timeBetweenRetries,
  func(status int, body string) bool {
   return status == 200 &&
    strings.Contains(body, "Hello, 
World")
  },
 )
}

This code is nearly identical to the unit test for the alb example, with only
two differences:

The TerraformDir setting is pointing to the hello-world-app
example instead of the alb example (be sure to update the path as
necessary for your filesystem).

Instead of using http_helper.HttpGetWithRetry to check for
a 404 response, the test is using the
http_helper.HttpGetWithRetryWithCustomValidatio
n method to check for a 200 response and a body that contains the text
“Hello, World.” That’s because the User Data script of the hello-



world-app module returns a 200 OK response that includes not only
the server text but also other text, including HTML.

There’s just one new thing you’ll need to add to this test—set the
mysql_config variable:

 opts := &terraform.Options{
  // You should update this relative path to point 
at your
  // hello-world-app example directory!
  TerraformDir: "../examples/hello-world-
app/standalone", 
 
  Vars: map[string]interface{}{
   "mysql_config": map[string]interface{}{
    "address": "mock-value-for-test",
    "port":    3306,
   },
  },
 }

The Vars parameter in terraform.Options allows you to set
variables in your Terraform code. This code is passing in some mock data
for the mysql_config variable. Alternatively, you could set this value to
anything you want: for example, you could fire up a small, in-memory
database at test time and set the address to that database’s IP.

Run this new test using go test, specifying the -run argument to run
just this test (otherwise, Go’s default behavior is to run all tests in the
current folder, including the ALB example test you created earlier):

$ go test -v -timeout 30m -run TestHelloWorldAppExample 
 
(...) 
 
PASS 
ok   terraform-up-and-running 204.113s

If all goes well, the test will run terraform apply, make repeated
HTTP requests to the load balancer, and, as soon as it gets back the



expected response, run terraform destroy to clean everything up. All
told, it should take only a few minutes, and you now have a reasonable unit
test for the “Hello, World” app.

Running tests in parallel
In the previous section, you ran just a single test using the -run argument
of the go test command. If you had omitted that argument, Go would’ve
run all of your tests—sequentially. Although four to five minutes to run a
single test isn’t too bad for testing infrastructure code, if you have dozens of
tests, and each one runs sequentially, it could take hours to run your entire
test suite. To shorten the feedback loop, you want to run as many tests in
parallel as you can.

To instruct Go to run your tests in parallel, the only change you need to
make is to add t.Parallel() to the top of each test. Here it is in
test/hello_world_app_example_test.go:

func TestHelloWorldAppExample(t *testing.T) {
 t.Parallel() 
 
 opts := &terraform.Options{
  // You should update this relative path to point 
at your
  // hello-world-app example directory!
  TerraformDir: "../examples/hello-world-
app/standalone", 
 
  Vars: map[string]interface{}{
   "mysql_config": map[string]interface{}{
    "address": "mock-value-for-test",
    "port":    3306,
   },
  },
 } 
 
 // (...)
}

And similarly in test/alb_example_test.go:



func TestAlbExample(t *testing.T) {
 t.Parallel() 
 
 opts := &terraform.Options{
  // You should update this relative path to point 
at your alb
  // example directory!
  TerraformDir: "../examples/alb",
 } 
 
 // (...)
}

If you run go test now, both of those tests will execute in parallel.
However, there’s one gotcha: some of the resources created by those tests—
for example, the ASG, security group, and ALB—use the same name,
which will cause the tests to fail due to the name clashes. Even if you
weren’t using t.Parallel() in your tests, if multiple people on your
team were running the same tests or if you had tests running in a CI
environment, these sorts of name clashes would be inevitable.

This leads to key testing takeaway #4: you must namespace all of your
resources.

That is, design modules and examples so that the name of every resource is
(optionally) configurable. With the alb example, this means that you need
to make the name of the ALB configurable. Add a new input variable in
examples/alb/variables.tf with a reasonable default:

variable "alb_name" {
  description = "The name of the ALB and all its resources"
  type        = string
  default     = "terraform-up-and-running"
}

Next, pass this value through to the alb module in examples/alb/main.tf:

module "alb" {
  source = "../../modules/networking/alb" 
 
  alb_name   = var.alb_name



  subnet_ids = data.aws_subnets.default.ids
}

Now, set this variable to a unique value in test/alb_example_test.go:

package test 
 
import (
 "fmt"
 "github.com/stretchr/testify/require" 
 
 "github.com/gruntwork-io/terratest/modules/http-helper"
 "github.com/gruntwork-io/terratest/modules/random"
 "github.com/gruntwork-io/terratest/modules/terraform"
 "testing"
 "time"
) 
 
func TestAlbExample(t *testing.T) {
 t.Parallel() 
 
 opts := &terraform.Options{
  // You should update this relative path to point 
at your alb
  // example directory!
  TerraformDir: "../examples/alb", 
 
  Vars: map[string]interface{}{
   "alb_name": fmt.Sprintf("test-%s", 
random.UniqueId()),
  },
 } 
 
 // (...)
}

This code sets the alb_name var to test-<RANDOM_ID>, where
RANDOM_ID is a random unique ID returned by the
random.UniqueId() helper in Terratest. This helper returns a
randomized, six-character base-62 string. The idea is that it’s a short
identifier you can add to the names of most resources without hitting
length-limit issues but random enough to make conflicts very unlikely (626



= 56+ billion combinations). This ensures that you can run a huge number
of ALB tests in parallel with no concern of having a name conflict.

Make a similar change to the “Hello, World” app example, first by adding a
new input variable in examples/hello-world-app/variables.tf:

variable "environment" {
  description = "The name of the environment we're deploying to"
  type        = string
  default     = "example"
}

Then by passing that variable through to the hello-world-app module:

module "hello_world_app" {
  source = "../../../modules/services/hello-world-app" 
 
  server_text = "Hello, World" 
 
  environment = var.environment 
 
  mysql_config = var.mysql_config 
 
  instance_type      = "t2.micro"
  min_size           = 2
  max_size           = 2
  enable_autoscaling = false
  ami                = data.aws_ami.ubuntu.id
}

Finally, setting environment to a value that includes
random.UniqueId() in test/hello_world_app_example_test.go:

func TestHelloWorldAppExample(t *testing.T) {
 t.Parallel() 
 
 opts := &terraform.Options{
  // You should update this relative path to point 
at your
  // hello-world-app example directory!
  TerraformDir: "../examples/hello-world-
app/standalone", 
 



  Vars: map[string]interface{}{
   "mysql_config": map[string]interface{}{
    "address": "mock-value-for-test",
    "port":    3306,
   },
   "environment": fmt.Sprintf("test-%s", 
random.UniqueId()),
  },
 } 
 
 // (...)
}

With these changes complete, it should now be safe to run all your tests in
parallel:

$ go test -v -timeout 30m 
 
TestAlbExample 2019-05-26T17:57:21+01:00 (...) 
TestHelloWorldAppExample 2019-05-26T17:57:21+01:00 (...) 
TestAlbExample 2019-05-26T17:57:21+01:00 (...) 
TestHelloWorldAppExample 2019-05-26T17:57:21+01:00 (...) 
TestHelloWorldAppExample 2019-05-26T17:57:21+01:00 (...) 
 
(...) 
 
PASS 
ok   terraform-up-and-running 216.090s

You should see both tests running at the same time so that the entire test
suite takes roughly as long as the slowest of the tests, rather than the
combined time of all the tests running back to back.

Note that, by default, the number of tests Go will run in parallel is equal to
how many CPUs you have on your computer. So if you only have one CPU,
then by default, the tests will still run serially, rather than in parallel. You
can override this setting by setting the GOMAXPROCS environment variable
or by passing the -parallel argument to the go test command. For
example, to force Go to run up to two tests in parallel, you would run the
following:

$ go test -v -timeout 30m -parallel 2



RUNNING TESTS IN PARALLEL IN THE SAME
FOLDER

One other type of parallelism to take into account is what happens if you try to run
multiple automated tests in parallel against the same Terraform folder. For example,
perhaps you’d want to run several different tests against examples/hello-world-app,
where each test sets different values for the input variables before running terraform
apply. If you try this, you’ll hit a problem: the tests will end up clashing because they
all try to run terraform init and end up overwriting one another’s .terraform
folder and Terraform state files.

If you want to run multiple tests against the same folder in parallel, the easiest solution
is to have each test copy that folder to a unique temporary folder, and run Terraform in
the temporary folder to avoid conflicts. Terratest, of course, has a built-in helper to do
this for you, and it even does it in a way that ensures that relative file paths within those
Terraform modules work correctly: check out the
test_structure.CopyTerraformFolderToTemp method and its
documentation for details.

Integration Tests
Now that you’ve got some unit tests in place, let’s move on to integration
tests. Again, it’s helpful to start with the Ruby web server example to build
up some intuition that you can later apply to the Terraform code. To do an
integration test of the Ruby web server code, you need to do the following:

1. Run the web server on localhost so that it listens on a port.

2. Send HTTP requests to the web server.

3. Validate you get back the responses you expect.

Let’s create a helper method in web-server-test.rb that implements these
steps:

  def do_integration_test(path, check_response) 
    port = 8000 
    server = WEBrick::HTTPServer.new :Port => port 
    server.mount '/', WebServer 
 
    begin 
      # Start the web server in a separate thread so it 



      # doesn't block the test 
      thread = Thread.new do 
        server.start 
      end 
 
      # Make an HTTP request to the web server at the 
      # specified path 
      uri = URI("http://localhost:#{port}#{path}") 
      response = Net::HTTP.get_response(uri) 
 
      # Use the specified check_response lambda to validate 
      # the response 
      check_response.call(response) 
    ensure 
      # Shut the server and thread down at the end of the 
      # test 
      server.shutdown 
      thread.join 
    end 
  end

The do_integration_test method configures the web server on port
8000, starts it in a background thread (so the web server doesn’t block the
test from running), sends an HTTP GET to the path specified, passes the
HTTP response to the specified check_response function for
validation, and at the end of the test, shuts down the web server. Here’s how
you can use this method to write an integration test for the / endpoint of the
web server:

  def test_integration_hello 
    do_integration_test('/', lambda { |response| 
      assert_equal(200, response.code.to_i) 
      assert_equal('text/plain', response['Content-Type']) 
      assert_equal('Hello, World', response.body) 
    }) 
  end

This method calls the do_integration_test method with the / path
and passes it a lambda (essentially, an inline function) that checks the
response was a 200 OK with the body “Hello, World.” The integration tests
for the other endpoints are analogous. Let’s run all of the tests:



$ ruby web-server-test.rb 
 
(...) 
 
Finished in 0.221561 seconds. 
-------------------------------------------- 
8 tests, 24 assertions, 0 failures, 0 errors 
100% passed 
--------------------------------------------

Note that before, with solely unit tests, the test suite took 0.000572 seconds
to run, but now, with integration tests, it takes 0.221561 seconds, a
slowdown of roughly 387 times. Of course, 0.221561 seconds is still
blazing fast, but that’s only because the Ruby web server code is
intentionally a minimal example that doesn’t do much. The important thing
here is not the absolute numbers but the relative trend: integration tests are
typically slower than unit tests. I’ll come back to this point later.

Let’s now turn our attention to integration tests for Terraform code. If a
“unit” in Terraform is a single module, an integration test that validates how
several units work together would need to deploy several modules and see
that they work correctly. In the previous section, you deployed the “Hello,
World” app example with mock data instead of a real MySQL DB. For an
integration test, let’s deploy the MySQL module for real and make sure the
“Hello, World” app integrates with it correctly. You should already have
just such code under live/stage/data-stores/mysql and
live/stage/services/hello-world-app. That is, you can create an integration
test for (parts of) your staging environment.

Of course, as mentioned earlier in the chapter, all automated tests should
run in an isolated AWS account. So while you’re testing the code that is
meant for staging, you should authenticate to an isolated testing account
and run the tests there. If your modules have anything in them hardcoded
for the staging environment, this is the time to make those values
configurable so you can inject test-friendly values. In particular, in
live/stage/data-stores/mysql/variables.tf, expose the database name via a
new db_name input variable:



variable "db_name" {
  description = "The name to use for the database"
  type        = string
  default     = "example_database_stage"
}

Pass that value through to the mysql module in live/stage/data-
stores/mysql/main.tf:

module "mysql" {
  source = "../../../../modules/data-stores/mysql" 
 
  db_name     = var.db_name
  db_username = var.db_username
  db_password = var.db_password
}

Let’s now create the skeleton of the integration test in
test/hello_world_integration_test.go and fill in the implementation details
later:

// Replace these with the proper paths to your modules
const dbDirStage = "../live/stage/data-stores/mysql"
const appDirStage = "../live/stage/services/hello-world-app" 
 
func TestHelloWorldAppStage(t *testing.T) {
 t.Parallel() 
 
 // Deploy the MySQL DB
 dbOpts := createDbOpts(t, dbDirStage)
 defer terraform.Destroy(t, dbOpts)
 terraform.InitAndApply(t, dbOpts) 
 
 // Deploy the hello-world-app
 helloOpts := createHelloOpts(dbOpts, appDirStage)
 defer terraform.Destroy(t, helloOpts)
 terraform.InitAndApply(t, helloOpts) 
 
 // Validate the hello-world-app works
 validateHelloApp(t, helloOpts)
}



The test is structured as follows: deploy mysql, deploy the hello-
world-app, validate the app, undeploy the hello-world-app (runs at
the end due to defer), and, finally, undeploy mysql (runs at the end due
to defer). The createDbOpts, create HelloOpts, and
validateHelloApp methods don’t exist yet, so let’s implement them
one at a time, starting with the createDbOpts method:

func createDbOpts(t *testing.T, terraformDir string) 
*terraform.Options {
 uniqueId := random.UniqueId() 
 
 return &terraform.Options{
  TerraformDir: terraformDir, 
 
  Vars: map[string]interface{}{
   "db_name":     fmt.Sprintf("test%s", 
uniqueId),
   "db_username": "admin",
   "db_password": "password",
  },
 }
}

Not much new so far: the code points terraform.Options at the
passed-in directory and sets the db_name, db_username, and
db_password variables.

The next step is to deal with where this mysql module will store its state.
Up to now, the backend configuration has been set to hardcoded values:

  backend "s3" {
    # Replace this with your bucket name!
    bucket         = "terraform-up-and-running-state"
    key            = "stage/data-stores/mysql/terraform.tfstate"
    region         = "us-east-2" 
 
    # Replace this with your DynamoDB table name!
    dynamodb_table = "terraform-up-and-running-locks"
    encrypt        = true 
  }



These hardcoded values are a big problem for testing, because if you don’t
change them, you’ll end up overwriting the real state file for staging! One
option is to use Terraform workspaces (as discussed in “Isolation via
Workspaces”), but that would still require access to the S3 bucket in the
staging account, whereas you should be running tests in a totally separate
AWS account. The better option is to use partial configuration, as
introduced in “Limitations with Terraform’s Backends”. Move the entire
backend configuration into an external file, such as backend.hcl:

bucket         = "terraform-up-and-running-state"
key            = "stage/data-stores/mysql/terraform.tfstate"
region         = "us-east-2"
dynamodb_table = "terraform-up-and-running-locks"
encrypt        = true

leaving the backend configuration in live/stage/data-stores/mysql/main.tf
empty:

  backend "s3" { 
  }

When you’re deploying the mysql module to the real staging environment,
you tell Terraform to use the backend configuration in backend.hcl via the
-backend-config argument:

$ terraform init -backend-config=backend.hcl

When you’re running tests on the mysql module, you can tell Terratest to
pass in test-time-friendly values using the BackendConfig parameter of
terraform.Options:

func createDbOpts(t *testing.T, terraformDir string) 
*terraform.Options {
 uniqueId := random.UniqueId() 
 
 bucketForTesting := "YOUR_S3_BUCKET_FOR_TESTING"
 bucketRegionForTesting := 
"YOUR_S3_BUCKET_REGION_FOR_TESTING"



 dbStateKey := fmt.Sprintf("%s/%s/terraform.tfstate", 
t.Name(), uniqueId) 
 
 return &terraform.Options{
  TerraformDir: terraformDir, 
 
  Vars: map[string]interface{}{
   "db_name":     fmt.Sprintf("test%s", 
uniqueId),
   "db_username": "admin",
   "db_password": "password",
  }, 
 
  BackendConfig: map[string]interface{}{
   "bucket":  bucketForTesting,
   "region":  bucketRegionForTesting,
   "key":     dbStateKey,
   "encrypt": true,
  },
 }
}

You’ll need to update the bucketForTesting and
bucketRegionForTesting variables with your own values. You can
create a single S3 bucket in your test AWS account to use as a backend,
as the key configuration (the path within the bucket) includes the
uniqueId, which should be unique enough to have a different value for
each test.

The next step is to make some updates to the hello-world-app module
in the staging environment. Open live/stage/services/hello-world-
app/variables.tf, and expose variables for db_remote_state_bucket,
db_remote_state_key, and environment:

variable "db_remote_state_bucket" {
  description = "The name of the S3 bucket for the database's 
remote state"
  type        = string
} 
 
variable "db_remote_state_key" {
  description = "The path for the database's remote state in S3"
  type        = string



} 
 
variable "environment" {
  description = "The name of the environment we're deploying to"
  type        = string
  default     = "stage"
}

Pass those values through to the hello-world-app module in
live/stage/services/hello-world-app/main.tf:

module "hello_world_app" {
  source = "../../../../modules/services/hello-world-app" 
 
  server_text            = "Hello, World" 
 
  environment            = var.environment
  db_remote_state_bucket = var.db_remote_state_bucket
  db_remote_state_key    = var.db_remote_state_key 
 
  instance_type      = "t2.micro"
  min_size           = 2
  max_size           = 2
  enable_autoscaling = false
  ami                = data.aws_ami.ubuntu.id
}

Now you can implement the createHelloOpts method:

func createHelloOpts(
 dbOpts *terraform.Options,
 terraformDir string) *terraform.Options { 
 
 return &terraform.Options{
  TerraformDir: terraformDir, 
 
  Vars: map[string]interface{}{
   "db_remote_state_bucket": 
dbOpts.BackendConfig["bucket"],
   "db_remote_state_key":    
dbOpts.BackendConfig["key"],
   "environment":            
dbOpts.Vars["db_name"],
  },



 }
}

Note that db_remote_state_bucket and db_remote_state_key
are set to the values used in the BackendConfig for the mysql module
to ensure that the hello-world-app module is reading from the exact
same state to which the mysql module just wrote. The environment
variable is set to the db_name just so all the resources are namespaced the
same way.

Finally, you can implement the validateHelloApp method:

func validateHelloApp(t *testing.T, helloOpts *terraform.Options) 
{
 albDnsName := terraform.OutputRequired(t, helloOpts, 
"alb_dns_name")
 url := fmt.Sprintf("http://%s", albDnsName) 
 
 maxRetries := 10
 timeBetweenRetries := 10 * time.Second 
 
 http_helper.HttpGetWithRetryWithCustomValidation(
  t,
  url,
  nil,
  maxRetries,
  timeBetweenRetries,
  func(status int, body string) bool {
   return status == 200 &&
    strings.Contains(body, "Hello, 
World")
  },
 )
}

This method uses the http_helper package, just as with the unit tests,
except this time, it’s with the
http_helper.HttpGetWithRetryWithCustomValidation
method that allows you to specify custom validation rules for the HTTP
response status code and body. This is necessary to check that the HTTP
response contains the string “Hello, World,” rather than equals that string



exactly, as the User Data script in the hello-world-app module returns
an HTML response with other text in it as well.

Alright, run the integration test to see whether it worked:

$ go test -v -timeout 30m -run "TestHelloWorldAppStage" 
 
(...) 
 
PASS 
ok   terraform-up-and-running 795.63s

Excellent, you now have an integration test that you can use to check that
several of your modules work correctly together. This integration test is
more complicated than the unit test, and it takes more than twice as long
(10–15 minutes rather than 4–5 minutes). In general, there’s not much that
you can do to make things faster—the bottleneck here is how long AWS
takes to deploy and undeploy RDS, ASGs, ALBs, etc.—but in certain
circumstances, you might be able to make the test code do less using test
stages.

Test stages
If you look at the code for your integration test, you may notice that it
consists of five distinct “stages”:

1. Run terraform apply on the mysql module.

2. Run terraform apply on the hello-world-app module.

3. Run validations to make sure everything is working.

4. Run terraform destroy on the hello-world-app module.

5. Run terraform destroy on the mysql module.

When you run these tests in a CI environment, you’ll want to run all of the
stages, from start to finish. However, if you’re running these tests in your
local dev environment while iteratively making changes to the code,
running all of these stages is unnecessary. For example, if you’re making



changes only to the hello-world-app module, rerunning this entire test
after every change means you’re paying the price of deploying and
undeploying the mysql module, even though none of your changes affect
it. That adds 5 to 10 minutes of pure overhead to every test run.

Ideally, the workflow would look more like this:

1. Run terraform apply on the mysql module.

2. Run terraform apply on the hello-world-app module.

3. Now, you start doing iterative development:

a. Make a change to the hello-world-app module.

b. Rerun terraform apply on the hello-world-app
module to deploy your updates.

c. Run validations to make sure everything is working.

d. If everything works, move on to the next step. If not, go back to
step 3a.

4. Run terraform destroy on the hello-world-app module.

5. Run terraform destroy on the mysql module.

Having the ability to quickly do that inner loop in step 3 is the key to fast,
iterative development with Terraform. To support this, you need to break
your test code into stages, in which you can choose the stages to execute
and those that you can skip.

Terratest supports this natively with the test_structure package. The
idea is that you wrap each stage of your test in a function with a name, and
you can then direct Terratest to skip some of those names by setting
environment variables. Each test stage stores test data on disk so that it can
be read back from disk on subsequent test runs. Let’s try this out on
test/hello_world_integration_test.go, writing the skeleton of the test first
and then filling in the underlying methods later:



func TestHelloWorldAppStageWithStages(t *testing.T) {
 t.Parallel() 
 
 // Store the function in a short variable name solely to 
make the
 // code examples fit better in the book.
 stage := test_structure.RunTestStage 
 
 // Deploy the MySQL DB
 defer stage(t, "teardown_db", func() { teardownDb(t, 
dbDirStage) })
 stage(t, "deploy_db", func() { deployDb(t, dbDirStage) }) 
 
 // Deploy the hello-world-app
 defer stage(t, "teardown_app", func() { teardownApp(t, 
appDirStage) })
 stage(t, "deploy_app", func() { deployApp(t, dbDirStage, 
appDirStage) }) 
 
 // Validate the hello-world-app works
 stage(t, "validate_app", func() { validateApp(t, 
appDirStage) })
}

The structure is the same as before—deploy mysql, deploy hello-
world-app, validate hello-world-app, undeploy hello-world-
app (runs at the end due to defer), undeploy mysql (runs at the end due
to defer)—except now, each stage is wrapped in
test_structure.RunTestStage. The RunTestStage method
takes three arguments:

t

The first argument is the t value that Go passes as an argument to every
automated test. You can use this value to manage test state. For
example, you can fail the test by calling t.Fail().

Stage name

The second argument allows you to specify the name for this test stage.
You’ll see an example shortly of how to use this name to skip test
stages.



The code to execute

The third argument is the code to execute for this test stage. This can be
any function.

Let’s now implement the functions for each test stage, starting with
deployDb:

func deployDb(t *testing.T, dbDir string) {
 dbOpts := createDbOpts(t, dbDir) 
 
 // Save data to disk so that other test stages executed 
at a later
 // time can read the data back in
 test_structure.SaveTerraformOptions(t, dbDir, dbOpts) 
 
 terraform.InitAndApply(t, dbOpts)
}

Just as before, to deploy mysql, the code calls createDbOpts and
terraform .Ini tAn dApply. The only new thing is that, in between
those two steps, there is a call to
test_structure.SaveTerraformOptions. This writes the data in
dbOpts to disk so that other test stages can read it later on. For example,
here’s the implementation of the teardownDb function:

func teardownDb(t *testing.T, dbDir string) {
 dbOpts := test_structure.LoadTerraformOptions(t, dbDir)
 defer terraform.Destroy(t, dbOpts)
}

This function uses test_structure.LoadTerraformOptions to
load the dbOpts data from disk that was earlier saved by the deployDb
function. The reason you need to pass this data via the hard drive rather
than passing it in memory is that you can run each test stage as part of a
different test run—and therefore, as part of a different process. As you’ll
see a little later in this chapter, on the first few runs of go test, you
might want to run deployDb but skip teardownDb, and then in later



runs do the opposite, running teardownDb but skipping deployDb. To
ensure that you’re using the same database across all those test runs, you
must store that database’s information on disk.

Let’s now implement the deployHelloApp function:

func deployApp(t *testing.T, dbDir string, helloAppDir string) {
 dbOpts := test_structure.LoadTerraformOptions(t, dbDir)
 helloOpts := createHelloOpts(dbOpts, helloAppDir) 
 
 // Save data to disk so that other test stages executed 
at a later
 // time can read the data back in
 test_structure.SaveTerraformOptions(t, helloAppDir, 
helloOpts) 
 
 terraform.InitAndApply(t, helloOpts)
}

This function reuses the createHelloOpts function from before and
calls terraform.InitAndApply on it. Again, the only new behavior
is the use of test_structure.LoadTerraformOptions to load
dbOpts from disk and the use of
test_structure.SaveTerraformOptions to save helloOpts
to disk. At this point, you can probably guess what the implementation of
the teardownApp method looks like:

func teardownApp(t *testing.T, helloAppDir string) {
 helloOpts := test_structure.LoadTerraformOptions(t, 
helloAppDir)
 defer terraform.Destroy(t, helloOpts)
}

And the implementation of the validateApp method:

func validateApp(t *testing.T, helloAppDir string) {
 helloOpts := test_structure.LoadTerraformOptions(t, 
helloAppDir)
 validateHelloApp(t, helloOpts)
}



So, overall, the test code is identical to the original integration test, except
each stage is wrapped in a call to test_structure.RunTestStage,
and you need to do a little work to save and load data to and from disk.
These simple changes unlock an important ability: you can instruct Terratest
to skip any test stage called foo by setting the environment variable
SKIP_foo=true. Let’s go through a typical coding workflow to see how
this works.

Your first step will be to run the test but to skip both of the teardown stages
so that the mysql and hello-world-app modules stay deployed at the
end of the test. Because the teardown stages are called teardown_db and
teardown_app, you need to set the SKIP_teardown_db and
SKIP_teardown_app environment variables, respectively, to direct
Terratest to skip those two stages:

$ SKIP_teardown_db=true \ 
  SKIP_teardown_app=true \ 
  go test -timeout 30m -run 'TestHelloWorldAppStageWithStages' 
 
(...) 
 
The 'SKIP_deploy_db' environment variable is not set, 
so executing stage 'deploy_db'. 
 
(...) 
 
The 'deploy_app' environment variable is not set, 
so executing stage 'deploy_db'. 
 
(...) 
 
The 'validate_app' environment variable is not set, 
so executing stage 'deploy_db'. 
 
(...) 
 
The 'teardown_app' environment variable is set, 
so skipping stage 'deploy_db'. 
 
(...) 
 
The 'teardown_db' environment variable is set, 



so skipping stage 'deploy_db'. 
 
(...) 
 
PASS 
ok   terraform-up-and-running 423.650s

Now you can start iterating on the hello-world-app module, and each
time you make a change, you can rerun the tests, but this time, direct them
to skip not only the teardown stages but also the mysql module deploy
stage (because mysql is still running) so that the only things that execute
are deploy app and the validations for the hello-world-app
module:

$ SKIP_teardown_db=true \ 
  SKIP_teardown_app=true \ 
  SKIP_deploy_db=true \ 
  go test -timeout 30m -run 'TestHelloWorldAppStageWithStages' 
 
(...) 
 
The 'SKIP_deploy_db' environment variable is set, 
so skipping stage 'deploy_db'. 
 
(...) 
 
The 'deploy_app' environment variable is not set, 
so executing stage 'deploy_db'. 
 
(...) 
 
The 'validate_app' environment variable is not set, 
so executing stage 'deploy_db'. 
 
(...) 
 
The 'teardown_app' environment variable is set, 
so skipping stage 'deploy_db'. 
 
(...) 
 
The 'teardown_db' environment variable is set, 
so skipping stage 'deploy_db'. 
 



(...) 
 
PASS 
ok   terraform-up-and-running 13.824s

Notice how fast each of these test runs is now: instead of waiting 10 to 15
minutes after every change, you can try out new changes in 10 to 60
seconds (depending on the change). Given that you’re likely to rerun these
stages dozens or even hundreds of times during development, the time
savings can be massive.

Once the hello-world-app module changes are working the way you
expect, it’s time to clean everything up. Run the tests once more, this time
skipping the deploy and validation stages so that only the teardown stages
are executed:

$ SKIP_deploy_db=true \ 
  SKIP_deploy_app=true \ 
  SKIP_validate_app=true \ 
  go test -timeout 30m -run 'TestHelloWorldAppStageWithStages' 
 
(...) 
 
The 'SKIP_deploy_db' environment variable is set, 
so skipping stage 'deploy_db'. 
 
(...) 
 
The 'SKIP_deploy_app' environment variable is set, 
so skipping stage 'deploy_app'. 
 
(...) 
 
The 'SKIP_validate_app' environment variable is set, 
so skipping stage 'validate_app'. 
 
(...) 
 
The 'SKIP_teardown_app' environment variable is not set, 
so executing stage 'teardown_app'. 
 
(...) 
 
The 'SKIP_teardown_db' environment variable is not set, 



so executing stage 'teardown_db'. 
 
(...) 
 
PASS 
ok   terraform-up-and-running 340.02s

Using test stages lets you get rapid feedback from your automated tests,
dramatically increasing the speed and quality of iterative development. It
won’t make any difference in how long tests take in your CI environment,
but the impact on the development environment is huge.

Retries
After you start running automated tests for your infrastructure code on a
regular basis, you’re likely to run into a problem: flaky tests. That is, tests
occasionally will fail for transient reasons, such as an EC2 Instance
occasionally failing to launch, or a Terraform eventual consistency bug, or a
TLS handshake error talking to S3. The infrastructure world is a messy
place, so you should expect intermittent failures in your tests and handle
them accordingly.

To make your tests a bit more resilient, you can add retries for known
errors. For example, while writing this book, I’d occasionally get the
following type of error, especially when running many tests in parallel:

* error loading the remote state: RequestError: send request 
failed 
Post https://xxx.amazonaws.com/: dial tcp xx.xx.xx.xx:443: 
connect: connection refused

To make tests more reliable in the face of such errors, you can enable retries
in Terratest using the MaxRetries, TimeBetweenRetries, and
RetryableTerraformErrors arguments of
terraform.Options:

func createHelloOpts(
 dbOpts *terraform.Options,
 terraformDir string) *terraform.Options { 



 
 return &terraform.Options{
  TerraformDir: terraformDir, 
 
  Vars: map[string]interface{}{
   "db_remote_state_bucket": 
dbOpts.BackendConfig["bucket"],
   "db_remote_state_key":    
dbOpts.BackendConfig["key"],
   "environment":            
dbOpts.Vars["db_name"],
  }, 
 
  // Retry up to 3 times, with 5 seconds between 
retries,
  // on known errors
  MaxRetries:         3,
  TimeBetweenRetries: 5 * time.Second,
  RetryableTerraformErrors: map[string]string{
   "RequestError: send request failed": 
"Throttling issue?",
  },
 }
}

In the RetryableTerraformErrors argument, you can specify a map
of known errors that warrant a retry: the keys of the map are the error
messages to look for in the logs (you can use regular expressions here), and
the values are additional information to display in the logs when Terratest
matches one of these errors and kicks off a retry. Now, whenever your test
code hits one of these known errors, you should see a message in your logs,
followed by a sleep of TimeBetweenRetries, and then your command
will rerun:

$ go test -v -timeout 30m 
 
(...) 
 
Running command terraform with args [apply -input=false -
lock=false 
-auto-approve] 
 
(...) 
 



* error loading the remote state: RequestError: send request 
failed 
Post https://s3.amazonaws.com/: dial tcp 11.22.33.44:443: 
connect: connection refused 
 
(...) 
 
'terraform [apply]' failed with the error 'exit status code 1' 
but this error was expected and warrants a retry. Further 
details: 
Intermittent error, possibly due to throttling? 
 
(...) 
 
Running command terraform with args [apply -input=false -
lock=false 
-auto-approve]

End-to-End Tests
Now that you have unit tests and integration tests in place, the final type of
tests that you might want to add are end-to-end tests. With the Ruby web
server example, end-to-end tests might consist of deploying the web server
and any data stores it depends on and testing it from the web browser using
a tool such as Selenium. The end-to-end tests for Terraform infrastructure
will look similar: deploy everything into an environment that mimics
production, and test it from the end-user’s perspective.

Although you could write your end-to-end tests using the exact same
strategy as the integration tests—that is, create a few dozen test stages to
run terraform apply, do some validations, and then run terraform
destroy—this is rarely done in practice. The reason for this has to do
with the test pyramid, which you can see in Figure 9-1.



Figure 9-1. The test pyramid.

The idea of the test pyramid is that you should typically be aiming for a
large number of unit tests (the bottom of the pyramid), a smaller number of
integration tests (the middle of the pyramid), and an even smaller number of
end-to-end tests (the top of the pyramid). This is because, as you go up the
pyramid, the cost and complexity of writing the tests, the brittleness of the
tests, and the runtime of the tests all increase.

That gives us key testing takeaway #5: smaller modules are easier and faster
to test.

You saw in the previous sections that it required a fair amount of work with
namespacing, dependency injection, retries, error handling, and test stages
to test even a relatively simple hello-world-app module. With larger
and more complicated infrastructure, this only becomes more difficult.
Therefore, you want to do as much of your testing as low in the pyramid as
you can because the bottom of the pyramid offers the fastest, most reliable
feedback loop.



In fact, by the time you get to the top of the test pyramid, running tests to
deploy a complicated architecture from scratch becomes untenable for two
main reasons:

Too slow

Deploying your entire architecture from scratch and then undeploying it
all again can take a very long time: on the order of several hours. Test
suites that take that long provide relatively little value because the
feedback loop is simply too slow. You’d probably run such a test suite
only overnight, which means in the morning you’ll get a report about a
test failure, you’ll investigate for a while, submit a fix, and then wait for
the next day to see whether it worked. That limits you to roughly one
bug fix attempt per day. In these sorts of situations, what actually
happens is developers begin blaming others for test failures, convince
management to deploy despite the test failures, and eventually ignore
the test failures entirely.

Too brittle

As mentioned in the previous section, the infrastructure world is messy.
As the amount of infrastructure you’re deploying goes up, the odds of
hitting an intermittent, flaky issue goes up as well. For example,
suppose that a single resource (such as an EC2 Instance) has a one-in-a-
thousand chance (0.1%) of failing due to an intermittent error (actual
failure rates in the DevOps world are likely higher). This means that the
probability that a test that deploys a single resource runs without any
intermittent errors is 99.9%. So what about a test that deploys two
resources? For that test to succeed, you need both resources to deploy
without intermittent errors, and to calculate those odds, you multiply the
probabilities: 99.9% × 99.9% = 99.8%. With three resources, the odds
are 99.9% × 99.9% × 99.9% = 99.7%. With N resources, the formula is
99.9% .

So now let’s consider different types of automated tests. If you had a
unit test of a single module that deployed, say, 20 resources, the odds of
success are 99.9%  = 98.0%. This means that 2 test runs out of 100

N

20



will fail; if you add a few retries, you can typically make these tests
fairly reliable. Now, suppose that you had an integration test of 3
modules that deployed 60 resources. Now the odds of success are
99.9%  = 94.1%. Again, with enough retry logic, you can typically
make these tests stable enough to be useful. So what happens if you
want to write an end-to-end test that deploys your entire infrastructure,
which consists of 30 modules, or about 600 resources? The odds of
success are 99.9%  = 54.9%. This means that nearly half of your test
runs will fail for transient reasons!

You’ll be able to handle some of these errors with retries, but it quickly
turns into a never-ending game of whack-a-mole. You add a retry for a
TLS handshake timeout, only to be hit by an APT repo downtime in
your Packer template; you add retries to the Packer build, only to have
the build fail due to a Terraform eventual-consistency bug; just as you
are applying the Band-Aid to that, the build fails due to a brief GitHub
outage. And because end-to-end tests take so long, you get only one
attempt, maybe two, per day to fix these issues.

In practice, very few companies with complicated infrastructure run end-to-
end tests that deploy everything from scratch. Instead, the more common
test strategy for end-to-end tests works as follows:

1. One time, you pay the cost of deploying a persistent, production-like
environment called “test,” and you leave that environment running.

2. Every time someone makes a change to your infrastructure code, the
end-to-end test does the following:

a. Applies the infrastructure change to the test environment.

b. Runs validations against the test environment (e.g., uses Selenium
to test your code from the end-user’s perspective) to make sure
everything is working.

By changing your end-to-end test strategy to applying only incremental
changes, you’re reducing the number of resources that are being deployed

60

600



at test time from several hundred to just a handful so that these tests will be
faster and less brittle.

Moreover, this approach to end-to-end testing more closely mimics how
you’ll be deploying those changes in production. After all, it’s not like you
tear down and bring up your production environment from scratch to roll
out each change. Instead, you apply each change incrementally, so this style
of end-to-end testing offers a huge advantage: you can test not only that
your infrastructure works correctly but also that the deployment process for
that infrastructure works correctly, too.

Other Testing Approaches
Most of this chapter has focused on testing your Terraform code by doing a
full apply and destroy cycle. This is the gold standard of testing, but
there are three other types of automated tests you can use:

Static analysis

Plan testing

Server testing

Just as unit, integration, and end-to-end tests each catch different types of
bugs, each of the testing approaches just mentioned will catch different
types of bugs as well, so you’ll most likely want to use several of these
techniques together to get the best results. Let’s go through these new
categories one at a time.

Static analysis
Static analysis is the most basic way to test your Terraform code: you parse
the code and analyze it without actually executing it in any way. Table 9-1
shows some of the tools in this space that work with Terraform and how
they compare in terms of popularity and maturity, based on stats I gathered
from GitHub in February 2022.



The simplest of these tools is terraform validate, which is built into
Terraform itself, which can catch syntax issues. For example, if you forgot
to set the alb_name parameter in examples/alb, and you ran validate,
you would get output similar to the following:

$ terraform validate 
 
│ Error: Missing required argument 

│

Table 9-1. A comparison of popular static analysis tools for Terraform

terraform val
idate tfsec tflint Terrascan

Brief description Built-in Terraform
command

Spot potential
security issues

Pluggable
Terraform linter

Detect complia
and security
violations

License (same as
Terraform)

MIT MPL 2.0 Apache 2.0

Backing company (same as
Terraform)

Aqua Security (none) Accurics

Stars (same as
Terraform)

3,874 2,853 2,768

Contributors (same as
Terraform)

96 77 63

First release (same as
Terraform)

2019 2016 2017

Latest release (same as
Terraform)

v1.1.2 v0.34.1 v1.13.0

Built-in checks Syntax checks only AWS, Azure, GCP,
Kubernetes,
DigitalOcean, etc.

AWS, Azure, and
GCP

AWS, Azure, G
Kubernetes, etc

Custom checks Not supported Defined in YAML
or JSON

Defined in a Go
plugin

Defined in Reg



│ 
│   on main.tf line 20, in module "alb": 
│   20: module "alb" { 
│ 
│ The argument "alb_name" is required, but no definition was 
found.

Note that validate is limited solely to syntactic checks, whereas the
other tools allow you to enforce other types of policies. For example, you
can use tools such as tfsec and tflint to enforce policies, such as:

Security groups cannot be too open: e.g., block inbound rules that
allow access from all IPs (CIDR block 0.0.0.0/0).

All EC2 Instances must follow a specific tagging convention.

The idea here is to define your policies as code, so you can enforce your
security, compliance, and reliability requirements as code. In the next few
sections, you’ll see several other policy as code tools.

Strengths of static analysis tools

They run fast.

They are easy to use.

They are stable (no flaky tests).

You don’t need to authenticate to a real provider (e.g., to a real AWS
account).

You don’t have to deploy/undeploy real resources.

Weaknesses of static analysis tools

They are very limited in the types of errors they can catch. Namely,
they can only catch errors that can be determined from statically
reading the code, without executing it: e.g., syntax errors, type
errors, and a small subset of business logic errors. For example, you
can detect a policy violation for static values, such as a security



group hardcoded to allow inbound access from CIDR block
0.0.0.0/0, but you can’t detect policy violations from dynamic
values, such as the same security group but with the inbound CIDR
block being read in from a variable or file.

These tests aren’t checking functionality, so it’s possible for all the
checks to pass and the infrastructure still doesn’t work!

Plan testing
Another way to test your code is to run terraform plan and to analyze
the plan output. Since you’re executing the code, this is more than static
analysis, but it’s less than a unit or integration test, as you’re not executing
the code fully: in particular, plan executes the read steps (e.g., fetching
state, executing data sources) but not the write steps (e.g., creating or
modifying resources). Table 9-2 shows some of the tools that do plan
testing and how they compare in terms of popularity and maturity, based on
stats I gathered from GitHub in February 2022.



Since you’re already familiar with Terratest, let’s take a quick look at how
you can use it to do plan testing on the code in examples/alb. If you ran
terraform plan manually, here’s a snippet of the output you’d get:

Terraform will perform the following actions: 
 
  # module.alb.aws_lb.example will be created 
  + resource "aws_lb" "example" { 
      + arn                        = (known after apply) 
      + load_balancer_type         = "application" 
      + name                       = "test-4Ti6CP" 
      (...) 
    } 
 
  (...) 

Table 9-2. A comparison of popular plan testing tools for Terraform

Terratest
Open Policy
Agent (OPA)

HashiCorp
Sentinel Checkov

Brief description Go library for IaC
testing

General-purpose
policy engine

Policy-as-code for
HashiCorp
enterprise products

Policy-as-code 
everyone

License Apache 2.0 Apache 2.0 Commercial /
proprietary license

Apache 2.0

Backing company Gruntwork Styra HashiCorp Bridgecrew

Stars 5,888 6,207 (not open source) 3,758

Contributors 157 237 (not open source) 199

First release 2016 2016 2017 2019

Latest release v0.40.0 v0.37.1 v0.18.5 2.0.810

Built-in checks None None None AWS, Azure, G
Kubernetes, etc

Custom checks Defined in Go Defined in Rego Defined in Sentinel Defined in Pyth
or YAML



 
Plan: 5 to add, 0 to change, 0 to destroy.

How can you test this output programmatically? Here’s the basic structure
of a test that uses Terratest’s InitAndPlan helper to run init and plan
automatically:

func TestAlbExamplePlan(t *testing.T) { 
 t.Parallel() 
 
 albName := fmt.Sprintf("test-%s", random.UniqueId()) 
 
 opts := &terraform.Options{ 
  // You should update this relative path to point 
at your alb 
  // example directory! 
  TerraformDir: "../examples/alb", 
  Vars: map[string]interface{}{ 
   "alb_name": albName, 
  }, 
 } 
 
 planString := terraform.InitAndPlan(t, opts)
}

Even this minimal test offers some value, in that it validates that your code
can successfully run plan, which checks that the syntax is valid and that
all the read API calls work. But you can go even further. One small
improvement is to check that you get the expected counts at the end of the
plan: “5 to add, 0 to change, 0 to destroy.” You can do this using the
GetResourceCount helper

 // An example of how to check the plan output's 
add/change/destroy counts
 resourceCounts := terraform.GetResourceCount(t, 
planString) 
 require.Equal(t, 5, resourceCounts.Add) 
 require.Equal(t, 0, resourceCounts.Change) 
 require.Equal(t, 0, resourceCounts.Destroy)



You can do an even more thorough check by using the
InitAndPlanAndShowWithStructNoLogTempPlanFile helper
to parse the plan output into a struct, which gives you programmatic
access to all the values and changes in that plan output. For example, you
could check that the plan output includes the aws_lb resource at address
module.alb.aws_lb.example and that the name attribute of this
resource is set to the expected value, as follows:

 // An example of how to check specific values in the plan 
output
 planStruct := 
  
terraform.InitAndPlanAndShowWithStructNoLogTempPlanFile(t, opts) 
 
 alb, exists := 
  
planStruct.ResourcePlannedValuesMap["module.alb.aws_lb.example"] 
 require.True(t, exists, "aws_lb resource must exist") 
 
 name, exists := alb.AttributeValues["name"] 
 require.True(t, exists, "missing name parameter") 
 require.Equal(t, albName, name)

The strength of Terratest’s approach to plan testing is that it’s extremely
flexible, as you can write arbitrary Go code to check whatever you want.
But this very same factor is also, in some ways, a weakness, as it makes it
harder to get started.

Some teams prefer a more declarative language for defining their policies as
code. In the last few years, Open Policy Agent (OPA) has become a popular
policy-as-code tool, as it allows your to capture you company’s policies as
code in a declarative language called Rego.

For example, many companies have tagging policies they want to enforce.
A common one with Terraform code is to ensure that every resource that is
managed by Terraform has a ManagedBy = terraform tag. Here is a
simple policy called enforce_tagging.rego you could use to check for this
tag:



package terraform 
 
allow { 
   resource_change := input.resource_changes[_] 
   resource_change.change.after.tags["ManagedBy"]
}

This policy will look through the changes in a terraform plan output,
extract the tag ManagedBy, and set an OPA variable called allow to
true if that tag is set or undefined otherwise.

Now, consider the following Terraform module:

resource "aws_instance" "example" {
  ami           = data.aws_ami.ubuntu.id
  instance_type = "t2.micro"
}

This module is not setting the required ManagedBy tag. How can we catch
that with OPA?

The first step is to run terraform plan and to save the output to a plan
file:

$ terraform plan -out tfplan.binary

OPA only operates on JSON, so the next step is to convert the plan file to
JSON using the terraform show command:

$ terraform show -json tfplan.binary > tfplan.json

Finally, you can run the opa eval command to check this plan file
against the enforce_tagging.rego policy:

$ opa eval \ 
  --data enforce_tagging.rego \ 
  --input tfplan.json \ 
  --format pretty \ 
  data.terraform.allow 



 
undefined

Since the ManagedBy tag was not set, the output from OPA is
undefined. Now, try setting the ManagedBy tag:

resource "aws_instance" "example" {
  ami           = data.aws_ami.ubuntu.id
  instance_type = "t2.micro" 
 
  tags = {
    ManagedBy = "terraform" 
  }
}

Rerun terraform plan, terraform show, and opa eval:

$ terraform plan -out tfplan.binary 
 
$ terraform show -json tfplan.binary > tfplan.json 
 
$ opa eval \ 
  --data enforce_tagging.rego \ 
  --input tfplan.json \ 
  --format pretty \ 
  data.terraform.allow 
 
true

This time, the output is true, which means the policy has passed.

Using tools like OPA, you can enforce your company’s requirements by
creating a library of such policies and setting up a CI/CD pipeline that runs
these policies against your Terraform modules after every commit.

Strengths of plan testing tools

They run fast—not quite as fast as pure static analysis but much
faster than unit or integration tests.

They are somewhat easy to use—not quite as easy as pure static
analysis but much easier than unit or integration tests.



They are stable (few flaky tests)—not quite as stable as pure static
analysis but much more stable than unit or integration tests.

You don’t have to deploy/undeploy real resources.

Weaknesses of plan testing tools

They are limited in the types of errors they can catch. They can
catch more than pure static analysis but nowhere near as many
errors as unit and integration testing.

You have to authenticate to a real provider (e.g., to a real AWS
account). This is required for plan to work.

These tests aren’t checking functionality, so it’s possible for all the
checks to pass and the infrastructure still doesn’t work!

Server testing
There are a set of testing tools that are focused on testing that your servers
(including virtual servers) have been properly configured. I’m not aware of
any common name for these sorts of tools, so I’ll call it server testing.
These are not general-purpose tools for testing all aspects of your Terraform
code. In fact, most of these tools were originally built to be used with
configuration management tools, such as Chef and Puppet, which were
entirely focused on launching servers. However, as Terraform has grown in
popularity, it’s now very common to use it to launch servers, and these tools
can be helpful for validating that the servers you launched are working.
Table 9-3 shows some of the tools that do server testing and how they
compare in terms of popularity and maturity, based on stats I gathered from
GitHub in February 2022.



Table 9-3. A comparison of popular server testing tools

InSpec Serverspec Goss

Brief description Auditing and testing
framework

RSpec tests for your
servers

Quick and easy server
testing/validation

License Apache 2.0 MIT Apache 2.0

Backing company Chef (none) (none)

Stars 2,472 2,426 4,607

Contributors 279 128 89

First release 2016 2013 2015

Latest release v4.52.9 v2.42.0 v0.3.16

Built-in checks None None None

Custom checks Defined in a Ruby-
based DSL

Defined in a Ruby-
based DSL

Defined in YAML

Most of these tools provide a simple domain-specific language (DSL) for
checking that the servers you’ve deployed conform to some sort of
specification. For example, if you were testing a Terraform module that
deployed an EC2 Instance, you could use the following inspec code to
validate that the Instance has proper permissions on specific files, has
certain dependencies installed, and is listening on a specific port:

describe file('/etc/myapp.conf') do 
  it { should exist } 
  its('mode') { should cmp 0644 }
end 
 
describe apache_conf do 
  its('Listen') { should cmp 8080 }
end 
 
describe port(8080) do 
  it { should be_listening }
end



Strengths of server testing tools

They make it easy to validate specific properties of servers. The
DSLs these tools offer are much easier to use for common checks
than doing it all from scratch.

You can build up a library of policy checks. Because each individual
check is quick to write, per the previous bullet point, these tools
tend to be a good way to validate a checklist of requirements,
especially around compliance (e.g., PCI compliance, HIPAA
compliance, etc.).

They can catch many types of errors. Since you actually have to run
apply and you validate a real, running server, these types of tests
catch far more types of errors than pure static analysis or plan
testing.

Weaknesses of server testing tools

They are not as fast. These tests only work on servers that are
deployed, so you have to run the full apply (and perhaps
destroy) cycle, which can take a long time.

They are not as stable (some flaky tests). Since you have to run
apply and wait for real servers to deploy, you will hit various
intermittent issues and occasionally have flaky tests.

You have to authenticate to a real provider (e.g., to a real AWS
account). This is required for the apply to work to deploy the
servers, plus, these server testing tools all require additional
authentication methods—e.g., SSH—to connect to the servers
you’re testing.

You have to deploy/undeploy real resources. This takes time and
costs money.



They only thoroughly check that servers work and not other types of
infrastructure.

These tests aren’t checking functionality, so it’s possible for all the
checks to pass and the infrastructure still doesn’t work!

Conclusion
Everything in the infrastructure world is continuously changing: Terraform,
Packer, Docker, Kubernetes, AWS, Google Cloud, Azure, and so on are all
moving targets. This means that infrastructure code rots very quickly. Or to
put it another way:

Infrastructure code without automated tests is broken.

I mean this both as an aphorism and as a literal statement. Every single time
I’ve gone to write infrastructure code, no matter how much effort I’ve put
into keeping the code clean, testing it manually, and doing code reviews, as
soon as I’ve taken the time to write automated tests, I’ve found numerous
nontrivial bugs. Something magical happens when you take the time to
automate the testing process and, almost without exception, it flushes out
problems that you otherwise would’ve never found yourself (but your
customers would’ve). And not only do you find these bugs when you first
add automated tests, but if you run your tests after every commit, you’ll
keep finding bugs over time, especially as the DevOps world changes all
around you.

The automated tests I’ve added to my infrastructure code have caught bugs
not only in my own code but also in the tools I was using, including
nontrivial bugs in Terraform, Packer, Elasticsearch, Kafka, AWS, and so on.
Writing automated tests as shown in this chapter is not easy: it takes
considerable effort to write these tests, it takes even more effort to maintain
them and add enough retry logic to make them reliable, and it takes still
more effort to keep your test environment clean to keep costs in check. But
it’s all worth it.



When I build a module to deploy a data store, for example, after every
commit to that repo, my tests fire up a dozen copies of that data store in
various configurations, write data, read data, and then tear everything back
down. Each time those tests pass, that gives me huge confidence that my
code still works. If nothing else, the automated tests let me sleep better.
Those hours I spent dealing with retry logic and eventual consistency pay
off in the hours I won’t be spending at 3 a.m. dealing with an outage.



THIS BOOK HAS TESTS, TOO!
All of the code examples in this book have tests, too. You can find all of the code
examples, and all of their corresponding tests, at GitHub.

Throughout this chapter, you saw the basic process of testing Terraform
code, including the following key takeaways:

When testing Terraform code, you can’t use localhost

Therefore, you need to do all of your manual testing by deploying real
resources into one or more isolated sandbox environments.

You cannot do pure unit testing for Terraform code

Therefore, you have to do all of your automated testing by writing code
that deploys real resources into one or more isolated sandbox
environments.

Regularly clean up your sandbox environments

Otherwise, the environments will become unmanageable, and costs will
spiral out of control.

You must namespace all of your resources

This ensures that multiple tests running in parallel do not conflict with
one another.

Smaller modules are easier and faster to test

This was one of the key takeaways in Chapter 8, and it’s worth
repeating in this chapter, too: smaller modules are easier to create,
maintain, use, and test.

You also saw a number of different testing approaches throughout this
chapter: unit testing, integration testing, end-to-end testing, static analysis,

https://github.com/brikis98/terraform-up-and-running-code


and so on. Table 9-4 shows the trade-offs between these different types of
tests.

So which testing approach should you use? The answer is: a mix of all of
them! Each type of test has strengths and weaknesses, so you have to
combine multiple types of tests to be confident your code works as
expected. That doesn’t mean that you use all the different types of tests in
equal proportion: recall the test pyramid and how, in general, you’ll
typically want lots of unit tests, fewer integration tests, and only a small
number of high-value end-to-end tests. Moreover, you don’t have to add all
the different types of tests at once. Instead, pick the ones that give you the
best bang for your buck and add those first. Almost any testing is better

Table 9-4. A comparison of testing approaches (more black squares is better)

Static analysis Plan testing Server testing Unit tests

Fast to run ■■■■■ ■■■■□ ■■■□□ ■■□□□

Cheap to run ■■■■■ ■■■■□ ■■■□□ ■■□□□

Stable and reliable ■■■■■ ■■■■□ ■■■□□ ■■□□□

Easy to use ■■■■■ ■■■■□ ■■■□□ ■■□□□

Check syntax ■■■■■ ■■■■■ ■■■■■ ■■■■■

Check policies ■■□□□ ■■■■□ ■■■■□ ■■■■■

Check servers work □□□□□ □□□□□ ■■■■■ ■■■■■

Check other
infrastructure
works

□□□□□ □□□□□ ■■□□□ ■■■■□

Check all the
infrastructure
works together

□□□□□ □□□□□ □□□□□ ■□□□□



than none, so if all you can add for now is static analysis, then use that as a
starting point, and build on top of it incrementally.

Let’s now move on to Chapter 10, where you’ll see how to incorporate
Terraform code and your automated test code into your team’s workflow,
including how to manage environments, how to configure a CI/CD pipeline,
and more.

1  AWS doesn’t charge anything extra for additional AWS accounts, and if you use AWS
Organizations, you can create multiple “child” accounts that all roll up their billing to a single
root account, as you saw in Chapter 7.

2  In limited cases, it is possible to override the endpoints Terraform uses to communicate with
providers, such as overriding the endpoints Terraform uses to talk to AWS to instead talk to a
mocking tool called LocalStack. This works for a small number of endpoints, but most
Terraform code makes hundreds of different API calls to the underlying provider, and mocking
out all of them is impractical. Moreover, even if you do mock them all out, it’s not clear that
the resulting unit test can give you much confidence that your code works correctly: e.g., if you
create mock endpoints for ASGs and ALBs, your terraform apply might succeed, but
does that tell you anything useful about whether your code would have actually deployed a
working app on top of that infrastructure?

https://oreil.ly/S3JRC


Chapter 10. How to Use
Terraform as a Team

As you’ve been reading this book and working through the code samples,
you’ve most likely been working by yourself. In the real world, you’ll most
likely be working as part of a team, which introduces a number of new
challenges. You may need to find a way to convince your team to use
Terraform and other infrastructure-as-code (IaC) tools. You may need to
deal with multiple people concurrently trying to understand, use, and
modify the Terraform code you write. And you may need to figure out how
to fit Terraform into the rest of your tech stack and make it a part of your
company’s workflow.

In this chapter, I’ll dive into the key processes you need to put in place to
make Terraform and IaC work for your team:

Adopting infrastructure as code in your team

A workflow for deploying application code

A workflow for deploying infrastructure code

Putting it all together

Let’s go through these topics one at a time.

EXAMPLE CODE
As a reminder, you can find all of the code examples in the book on GitHub.

Adopting IaC in Your Team

https://github.com/brikis98/terraform-up-and-running-code


If your team is used to managing all of your infrastructure by hand,
switching to infrastructure as code requires more than just introducing a
new tool or technology. It also requires changing the culture and processes
of the team. Changing culture and process is a significant undertaking,
especially at larger companies. Because every team’s culture and process is
a little different, there’s no one-size-fits-all way to do it, but here are a few
tips that will be useful in most situations:

Convince your boss

Work incrementally

Give your team the time to learn

Convince Your Boss
I’ve seen this story play out many times at many companies: a developer
discovers Terraform, becomes inspired by what it can do, shows up to work
full of enthusiasm and excitement, shows Terraform to everyone… and the
boss says “no.” The developer, of course, becomes frustrated and
discouraged. Why doesn’t everyone else see the benefits of this? We could
automate everything! We could avoid so many bugs! How else can we pay
down all this tech debt? How can you all be so blind??

The problem is that although this developer sees all the benefits of adopting
an IaC tool such as Terraform, they aren’t seeing all the costs. Here are just
a few of the costs of adopting IaC:

Skills gap

The move to IaC means that your Ops team will need to spend most of
its time writing large amounts of code: Terraform modules, Go tests,
Chef recipes, and so on. Whereas some Ops engineers are comfortable
with coding all day and will love the change, others will find this a
tough transition. Many Ops engineers and sysadmins are used to making
changes manually, with perhaps an occasional short script here or there,
and the move to doing software engineering nearly full time might
require learning a number of new skills or hiring new people.



New tools

Software developers can become attached to the tools they use; some
are nearly religious about it. Every time you introduce a new tool, some
developers will be thrilled at the opportunity to learn something new,
but others will prefer to stick to what they know and may resist having
to invest lots of time and energy learning new languages and techniques.

Change in mindset

If your team members are used to managing infrastructure manually,
they are used to making all of their changes directly: for example, by
SSHing to a server and executing a few commands. The move to IaC
requires a shift in mindset where you make all of your changes
indirectly, first by editing code, then checking it in, and then letting
some automated process apply the changes. This layer of indirection can
be frustrating; for simple tasks, it’ll feel slower than the direct option,
especially when you’re still learning a new IaC tool and are not efficient
with it.

Opportunity cost

If you choose to invest your time and resources in one project, you are
implicitly choosing not to invest that time and resources in other
projects. What projects will have to be put on hold so that you can
migrate to IaC? How important are those projects?

Some developers on your team will look at this list and become excited. But
many others will groan—including your boss. Learning new skills,
mastering new tools, and adopting new mindsets may or may not be
beneficial, but one thing is certain: it is not free. Adopting IaC is a
significant investment, and as with any investment, you need to consider
not only the potential upside but also the potential downsides.

Your boss in particular will be sensitive to the opportunity cost. One of the
key responsibilities of any manager is to make sure the team is working on



the highest-priority projects. When you show up and excitedly start talking
about Terraform, what your boss might really be hearing is, “Oh no, this
sounds like a massive undertaking. How much time is it going to take?” It’s
not that your boss is blind to what Terraform can do, but if you are spending
time on that, you might not have time to deploy the new app the search
team has been asking about for months, or to prepare for the Payment Card
Industry (PCI) audit, or to dig into the outage from last week. So, if you
want to convince your boss that your team should adopt IaC, your goal is
not to prove that it has value but that it will bring more value to your team
than anything else you could work on during that time.

One of the least effective ways to do this is to just list the features of your
favorite IaC tool: for example, Terraform is declarative, it’s popular, it’s
open source. This is one of many areas where developers would do well to
learn from salespeople. Most salespeople know that focusing on features is
typically an ineffective way to sell products. A slightly better technique is to
focus on benefits: that is, instead of talking about what a product can do
(“product X can do Y!”), you should talk about what the customer can do
by using that product (“you can do Y by using product X!”). In other words,
show the customer what new superpowers your product can give them.

For example, instead of telling your boss that Terraform is declarative, talk
about how your infrastructure will be far easier to maintain. Instead of
talking about the fact that Terraform is popular, talk about how you’ll be
able to leverage lots of existing modules and plugins to get things done
faster. And instead of explaining to your boss that Terraform is open source,
help your boss see how much easier it will be to hire new developers for the
team from a large, active open source community.

Focusing on benefits is a great start, but the best salespeople know an even
more effective strategy: focus on the problems. If you watch a great
salesperson talking to a customer, you’ll notice that it’s actually the
customer that does most of the talking. The salesperson spends most of their
time listening and looking for one specific thing: What is the key problem
that customer is trying to solve? What’s the biggest pain point? Instead of
trying to sell some sort of features or benefits, the best salespeople try to



solve their customer’s problems. If that solution happens to include the
product they are selling, all the better, but the real focus is on problem
solving, not selling.

Talk to your boss and try to understand the most important problems they
are working on that quarter or that year. You might find that those problems
would not be solved by IaC. And that’s OK! It might be slightly heretical
for the author of a book on Terraform to say this, but not every team needs
IaC. Adopting IaC has a relatively high cost, and although it will pay off in
the long term for some scenarios, it won’t for others; for example, if you’re
at a tiny startup with just one Ops person, or you’re working on a prototype
that might be thrown away in a few months, or you’re just working on a
side project for fun, managing infrastructure by hand is often the right
choice. Sometimes, even if IaC would be a great fit for your team, it won’t
be the highest priority, and given limited resources, working on other
projects might still be the right choice.

If you do find that one of the key problems your boss is focused on can be
solved with IaC, then your goal is to show your boss what that world looks
like. For example, perhaps the biggest issue your boss is focused on this
quarter is improving uptime. You’ve had numerous outages the last few
months, many hours of downtime, customers are complaining, and the CEO
is breathing down your manager’s neck, checking in daily to see how things
are going. You dig in and find out that more than half of these outages were
caused by a manual error during deployment: e.g., someone accidentally
skipped an important step during the rollout process, or a server was
misconfigured, or the infrastructure in staging didn’t match what you had in
production.

Now, when you talk to your boss, instead of talking about Terraform
features or benefits, lead with the following: “I have an idea for how to
reduce our outages by half.” I guarantee this will get your boss’s attention.
Use this opportunity to paint a picture for your boss of a world in which
your deployment process is fully automated, reliable, and repeatable so that
the manual errors that caused half of your previous outages are no longer
possible. Not only that, but if deployment is automated, you can also add



automated tests, reducing outages further and allowing the whole company
to deploy twice as often. Let your boss dream of being the one to tell the
CEO that they’ve managed to cut outages in half and double deployments.
And then mention that, based on your research, you believe you can deliver
this future world using Terraform.

There’s no guarantee that your boss will say yes, but your odds are quite a
bit higher with this approach. And your odds get even better if you work
incrementally.

Work Incrementally
One of the most important lessons I’ve learned in my career is that most
large software projects fail. Whereas roughly 3 out of 4 small IT projects
(less than $1 million) are completed successfully, only 1 out of 10 large
projects (greater than $10 million) are completed on time and on budget,
and more than one-third of large projects are never completed at all.

This is why I always get worried when I see a team try to not only adopt
IaC but to do so all at once, across a huge amount of infrastructure, across
every team, and often as part of an even bigger initiative. I can’t help but
shake my head when I see the CEO or CTO of a large company give
marching orders that everything must be migrated to the cloud, the old
datacenters must be shut down, and that everyone will “do DevOps”
(whatever that means), all within six months. I’m not exaggerating when I
say that I’ve seen this pattern several dozen times, and without exception,
every single one of these initiatives has failed. Inevitably, two to three years
later, every one of these companies is still working on the migration, the old
datacenter is still running, and no one can tell whether they are really doing
DevOps.

If you want to successfully adopt IaC, or if you want to succeed at any other
type of migration project, the only sane way to do it is incrementally. The
key to incrementalism is not just splitting up the work into a series of small
steps but splitting up the work in such a way that every step brings its own
value—even if the later steps never happen.

1



To understand why this is so important, consider the opposite, false
incrementalism.  Suppose that you do a huge migration project, broken up
into several small steps, but the project doesn’t offer any real value until the
very final step is completed. For example, the first step is to rewrite the
frontend, but you don’t launch it, because it relies on a new backend. Then,
you rewrite the backend, but you don’t launch that either, because it doesn’t
work until data is migrated to a new data store. And then, finally, the last
step is to do the data migration. Only after this last step do you finally
launch everything and begin realizing any value from doing all this work.
Waiting until the very end of a project to get any value is a big risk. If that
project is canceled or put on hold or significantly changed partway through,
you might get zero value out of it, despite a lot of investment.

In fact, this is exactly what happens with many large migration projects.
The project is big to begin with, and like most software projects, it takes
much longer than expected. During that time, market conditions change, or
the original stakeholders lose patience (e.g., the CEO was OK with
spending three months to clean up tech debt, but after 12 months, it’s time
to begin shipping new products), and the project ends up getting canceled
before completion. With false incrementalism, this gives you the worst
possible outcome: you’ve paid a huge cost and received absolutely nothing
in return.

Therefore, incrementalism is essential. You want each part of the project to
deliver some value so that even if the project doesn’t finish, no matter what
step you got to, it was still worth doing. The best way to accomplish this is
to focus on solving one, small, concrete problem at a time. For example,
instead of trying to do a “big bang” migration to the cloud, try to identify
one, small, specific app or team that is struggling, and work to migrate just
them. Or instead of trying to do a “big bang” move to “DevOps,” try to
identify a single, small, concrete problem (e.g., outages during deployment)
and put in place a solution for that specific problem (e.g., automate the most
problematic deployment with Terraform).

If you can get a quick win by fixing one real, concrete problem right away,
and making one team successful, you’ll begin to build momentum. That
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team can become your cheerleader and help convince other teams to
migrate, too. Fixing the specific deployment issue can make the CEO happy
and get you support to use IaC for more projects. This will allow you to go
for another quick win, and another one after that. And if you can keep
repeating this process—delivering value early and often—you’ll be far
more likely to succeed at the larger migration effort. But even if the larger
migration doesn’t work out, at least one team is more successful now and
one deployment process works better, so it was still worth the investment.

Give Your Team the Time to Learn
I hope that, at this point, it’s clear that adopting IaC can be a significant
investment. It’s not something that will happen overnight. It’s not
something that will happen magically, just because the manager gives you a
nod. It will happen only through a deliberate effort of getting everyone on
board, making learning resources (e.g., documentation, video tutorials, and,
of course, this book!) available, and providing dedicated time for team
members to ramp up.

If your team doesn’t get the time and resources that it needs, then your IaC
migration is unlikely to be successful. No matter how nice your code is, if
your entire team isn’t on board with it, here’s how it will play out:

1. One developer on the team is passionate about IaC and spends a few
months writing beautiful Terraform code and using it to deploy lots of
infrastructure.

2. The developer is happy and productive, but unfortunately, the rest of
the team did not get the time to learn and adopt Terraform.

3. Then, the inevitable happens: an outage. One of your team members
needs to deal with it, and they have two options: either (A) fix the
outage the way they’ve always done it, by making changes manually,
which takes a few minutes, or (B) fix the outage by using Terraform,
but they aren’t familiar with it, so this could take hours or days. Your



team members are probably reasonable, rational people and will
almost always choose option A.

4. Now, as a result of the manual change, the Terraform code no longer
matches what’s actually deployed. Therefore, next time someone on
your team tries to use Terraform, there’s a chance that they will get a
weird error. If they do, they will lose trust in the Terraform code and
once again fall back to option A, making more manual changes. This
makes the code even more out of sync with reality, so the odds of the
next person getting a weird Terraform error are even higher, and you
quickly get into a cycle in which team members make more and more
manual changes.

5. In a remarkably short time, everyone is back to doing everything
manually, the Terraform code is completely unusable, and the months
spent writing it are a total waste.

This scenario isn’t hypothetical but something I’ve seen happen at many
different companies. They have large, expensive codebases full of beautiful
Terraform code that are just gathering dust. To avoid this scenario, you need
to not only convince your boss that you should use Terraform but also give
everyone on the team the time they need to learn the tool and internalize
how to use it so that when the next outage happens, it’s easier to fix it in
code than it is to do it by hand.

One thing that can help teams adopt IaC faster is to have a well-defined
process for using it. When you’re learning or using IaC on a small team,
running it ad hoc on a developer’s computer is good enough. But as your
company and IaC usage grows, you’ll want to define a more systematic,
repeatable, automated workflow for how deployments happen.

A Workflow for Deploying Application Code
In this section, I’ll introduce a typical workflow for taking application code
(e.g., a Ruby on Rails or Java/Spring app) from development all the way to
production. This workflow is reasonably well understood in the DevOps



industry, so you’ll probably be familiar with parts of it. Later in this chapter,
I’ll talk about a workflow for taking infrastructure code (e.g., Terraform
modules) from development to production. This workflow is not nearly as
well known in the industry, so it will be helpful to compare that workflow
side by side with the application workflow to understand how to translate
each application code step to an analogous infrastructure code step.

Here’s what the application code workflow looks like:

1. Use version control.

2. Run the code locally.

3. Make code changes.

4. Submit changes for review.

5. Run automated tests.

6. Merge and release.

7. Deploy.

Let’s go through these steps one at a time.

Use Version Control
All of your code should be in version control. No exceptions. It was the #1
item on the classic Joel Test when Joel Spolsky created it more than 20
years ago, and the only things that have changed since then are that (a) with
tools like GitHub, it’s easier than ever to use version control and (b) you
can represent more and more things as code. This includes documentation
(e.g., a README written in Markdown), application configuration (e.g., a
config file written in YAML), specifications (e.g., test code written with
RSpec), tests (e.g., automated tests written with JUnit), databases (e.g.,
schema migrations written in ActiveRecord), and of course, infrastructure.

As in the rest of this book, I’m going to assume that you’re using Git for
version control. For example, here is how you can check out the code repo

https://bit.ly/2meqAb7


for this book:

$ git clone https://github.com/brikis98/terraform-up-and-running-
code.git

By default, this checks out the main branch of your repo, but you’ll most
likely do all of your work in a separate branch. Here’s how you can create a
branch called example-feature and switch to it by using the git
checkout command:

$ cd terraform-up-and-running-code 
$ git checkout -b example-feature 
Switched to a new branch 'example-feature'

Run the Code Locally
Now that the code is on your computer, you can run it locally. You may
recall the Ruby web server example from Chapter 9, which you can run as
follows:

$ cd code/ruby/10-terraform/team 
$ ruby web-server.rb 
 
[2019-06-15 15:43:17] INFO  WEBrick 1.3.1 
[2019-06-15 15:43:17] INFO  ruby 2.3.7 (2018-03-28) 
[universal.x86_64-darwin17] 
[2019-06-15 15:43:17] INFO  WEBrick::HTTPServer#start: pid=28618 
port=8000

Now you can manually test it with curl:

$ curl http://localhost:8000 
Hello, World

Alternatively, you can run the automated tests:

$ ruby web-server-test.rb 
 
(...) 
 



Finished in 0.633175 seconds. 
-------------------------------------------- 
8 tests, 24 assertions, 0 failures, 0 errors 
100% passed 
--------------------------------------------

The key thing to notice is that both manual and automated tests for
application code can run completely locally on your own computer. You’ll
see later in this chapter that this is not true for the same part of the
workflow for infrastructure changes.

Make Code Changes
Now that you can run the application code, you can begin making changes.
This is an iterative process in which you make a change, rerun your manual
or automated tests to see whether the change worked, make another change,
rerun the tests, and so on.

For example, you can change the output of web-server.rb to “Hello, World
v2,” restart the server, and see the result:

$ curl http://localhost:8000 
Hello, World v2

You might also update and rerun the automated tests. The idea in this part of
the workflow is to optimize the feedback loop so that the time between
making a change and seeing whether it worked is minimized.

As you work, you should regularly be committing your code, with clear
commit messages explaining the changes you’ve made:

$ git commit -m "Updated Hello, World text"

Submit Changes for Review
Eventually, the code and tests will work the way you want them to, so it’s
time to submit your changes for a code review. You can do this with a
separate code review tool (e.g., Phabricator or Review Board) or, if you’re



using GitHub, you can create a pull request. There are several different
ways to create a pull request. One of the easiest is to git push your
example-feature branch back to origin (that is, back to GitHub
itself), and GitHub will automatically print out a pull request URL in the
log output:

$ git push origin example-feature 
 
(...) 
 
remote: Resolving deltas: 100% (1/1), completed with 1 local 
object. 
remote: 
remote: Create a pull request for 'example-feature' on GitHub by 
visiting: 
remote:      https://github.com/<OWNER>/<REPO>/pull/new/example-
feature 
remote:

Open that URL in your browser, fill out the pull request title and
description, and then click Create. Your team members will now be able to
review the changes, as shown in Figure 10-1.



Figure 10-1. Your team members can review your code changes in a GitHub pull request.

Run Automated Tests
You should set up commit hooks to run automated tests for every commit
you push to your version control system. The most common way to do this
is to use a continuous integration (CI) server, such as Jenkins, CircleCI, or
GitHub Actions. Most popular CI servers have integrations built in
specifically for GitHub, so not only does every commit automatically run
tests, but the output of those tests shows up in the pull request itself, as
shown in Figure 10-2.

You can see in Figure 10-2 that CircleCI has run unit tests, integration tests,
end-to-end tests, and some static analysis checks (in the form of security



vulnerability scanning using a tool called snyk) against the code in the
branch, and everything passed.





Figure 10-2. GitHub pull request showing automated test results from CircleCI.

Merge and Release
Your team members should review your code changes, looking for potential
bugs, enforcing coding guidelines (more on this later in the chapter),
checking that the existing tests passed, and ensuring that you’ve added tests
for any new behavior. If everything looks good, your code can be merged
into the main branch.

The next step is to release the code. If you’re using immutable
infrastructure practices (as discussed in “Server Templating Tools”),
releasing application code means packaging that code into a new,
immutable, versioned artifact. Depending on how you want to package and
deploy your application, the artifact can be a new Docker image, a new
virtual machine image (e.g., new AMI), a new .jar file, a new .tar file, etc.
Whatever format you pick, make sure the artifact is immutable (i.e., you
never change it) and that it has a unique version number (so you can
distinguish this artifact from all of the others).

For example, if you are packaging your application using Docker, you can
store the version number in a Docker tag. You could use the ID of the
commit (the sha1 hash) as the tag so that you can map the Docker image
you’re deploying back to the exact code it contains:

$ commit_id=$(git rev-parse HEAD) 
$ docker build -t brikis98/ruby-web-server:$commit_id .

The preceding code will build a new Docker image called
brikis98/ruby-web-server and tag it with the ID of the most
recent commit, which will look something like
92e3c6380ba6d1e8c9134452ab6e26154e6ad849. Later on, if
you’re debugging an issue in a Docker image, you can see the exact code it
contains by checking out the commit ID the Docker image has as a tag:

$ git checkout 92e3c6380ba6d1e8c9134452ab6e26154e6ad849 
HEAD is now at 92e3c63 Updated Hello, World text



One downside to commit IDs is that they aren’t very readable or
memorable. An alternative is to create a Git tag:

$ git tag -a "v0.0.4" -m "Update Hello, World text" 
$ git push --follow-tags

A tag is a pointer to a specific Git commit but with a friendlier name. You
can use this Git tag on your Docker images:

$ git_tag=$(git describe --tags) 
$ docker build -t brikis98/ruby-web-server:$git_tag .

Thus, when you’re debugging, check out the code at a specific tag:

$ git checkout v0.0.4 
Note: checking out 'v0.0.4'. 
(...) 
HEAD is now at 92e3c63 Updated Hello, World text

Deploy
Now that you have a versioned artifact, it’s time to deploy it. There are
many different ways to deploy application code, depending on the type of
application, how you package it, how you want to run it, your architecture,
what tools you’re using, and so on. Here are a few of the key
considerations:

Deployment tooling

Deployment strategies

Deployment server

Promotion across environments

Deployment tooling
There are many different tools that you can use to deploy your application,
depending on how you package it and how you want to run it. Here are a



few examples:

Terraform

As you’ve seen in this book, you can use Terraform to deploy certain
types of applications. For example, in earlier chapters, you created a
module called asg-rolling-deploy that could do a zero-
downtime rolling deployment across an ASG. If you package your
application as an AMI (e.g., using Packer), you could deploy new AMI
versions with the asg-rolling-deploy module by updating the
ami parameter in your Terraform code and running terraform
apply.

Orchestration tools

There are a number of orchestration tools designed to deploy and
manage applications, such as Kubernetes (arguably the most popular
Docker orchestration tool), Amazon ECS, HashiCorp Nomad, and
Apache Mesos. In Chapter 7, you saw an example of how to use
Kubernetes to deploy Docker containers.

Scripts

Terraform and most orchestration tools support only a limited set of
deployment strategies (discussed in the next section). If you have more
complicated requirements, you may have to write custom scripts to
implement these requirements.

Deployment strategies
There are a number of different strategies that you can use for application
deployment, depending on your requirements. Suppose that you have five
copies of the old version of your app running, and you want to roll out a
new version. Here are a few of the most common strategies you can use:

Rolling deployment with replacement



Take down one of the old copies of the app, deploy a new copy to
replace it, wait for the new copy to come up and pass health checks,
start sending the new copy live traffic, and then repeat the process until
all of the old copies have been replaced. Rolling deployment with
replacement ensures that you never have more than five copies of the
app running, which can be useful if you have limited capacity (e.g., if
each copy of the app runs on a physical server) or if you’re dealing with
a stateful system where each app has a unique identity (e.g., this is often
the case with consensus systems, such as Apache ZooKeeper). Note that
this deployment strategy can work with larger batch sizes (you can
replace more than one copy of the app at a time if you can handle the
load and won’t lose data with fewer apps running) and that during
deployment, you will have both the old and new versions of the app
running at the same time.

Rolling deployment without replacement

Deploy one new copy of the app, wait for the new copy to come up and
pass health checks, start sending the new copy live traffic, undeploy an
old copy of the app, and then repeat the process until all the old copies
have been replaced. Rolling deployment without replacement works
only if you have flexible capacity (e.g., your apps run in the cloud,
where you can spin up new virtual servers any time you want) and if
your application can tolerate more than five copies of it running at the
same time. The advantage is that you never have less than five copies of
the app running, so you’re not running at a reduced capacity during
deployment. Note that this deployment strategy can also work with
larger batch sizes (if you have the capacity for it, you can deploy five
new copies all at once) and that during deployment, you will have both
the old and new versions of the app running at the same time.

Blue-green deployment

Deploy five new copies of the app, wait for all of them to come up and
pass health checks, shift all live traffic to the new copies at the same
time, and then undeploy the old copies. Blue-green deployment works



only if you have flexible capacity (e.g., your apps run in the cloud,
where you can spin up new virtual servers any time you want) and if
your application can tolerate more than five copies of it running at the
same time. The advantage is that only one version of your app is visible
to users at any given time and that you never have less than five copies
of the app running, so you’re not running at a reduced capacity during
deployment.

Canary deployment

Deploy one new copy of the app, wait for it to come up and pass health
checks, start sending live traffic to it, and then pause the deployment.
During the pause, compare the new copy of the app, called the “canary,”
to one of the old copies, called the “control.” You can compare the
canary and control across a variety of dimensions: CPU usage, memory
usage, latency, throughput, error rates in the logs, HTTP response codes,
and so on. Ideally, there’s no way to tell the two servers apart, which
should give you confidence that the new code works just fine. In that
case, you unpause the deployment and use one of the rolling
deployment strategies to complete it. On the other hand, if you spot any
differences, then that may be a sign of problems in the new code, and
you can cancel the deployment and undeploy the canary before the
problem becomes worse.

The name comes from the “canary in a coal mine” concept, where
miners would take canary birds with them down into the tunnels, and if
the tunnels filled with dangerous gases (e.g., carbon monoxide), those
gases would affect the canary before the miners, thus providing an early
warning to the miners that something was wrong and that they needed
to exit immediately, before more damage was done. The canary
deployment offers similar benefits, giving you a systematic way to test
new code in production in a way that, if something goes wrong, you get
a warning early on, when it has affected only a small portion of your
users and you still have enough time to react and prevent further
damage.



Canary deployments are often combined with feature toggles, in which
you wrap all new features in an if-statement. By default, the if-statement
defaults to false, so the new feature is toggled off when you initially
deploy the code. Because all new functionality is off, when you deploy
the canary server, it should behave identically to the control, and any
differences can be automatically flagged as a problem and trigger a
rollback. If there were no problems, later on you can enable the feature
toggle for a portion of your users via an internal web interface. For
example, you might initially enable the new feature only for employees;
if that works well, you can enable it for 1% of users; if that’s still
working well, you can ramp it up to 10%; and so on. If at any point
there’s a problem, you can use the feature toggle to ramp the feature
back down. This process allows you to separate deployment of new
code from release of new features.

Deployment server
You should run the deployment from a CI server and not from a developer’s
computer. This has the following benefits:

Fully automated

To run deployments from a CI server, you’ll be forced to fully automate
all deployment steps. This ensures that your deployment process is
captured as code, that you don’t miss any steps accidentally due to
manual error, and that the deployment is fast and repeatable.

Consistent environment

If developers run deployments from their own computers, you’ll run
into bugs due to differences in how their computer is configured: for
example, different operating systems, different dependency versions
(different versions of Terraform), different configurations, and
differences in what’s actually being deployed (e.g., the developer
accidentally deploys a change that wasn’t committed to version control).
You can eliminate all of these issues by deploying everything from the
same CI server.



Better permissions management

Instead of giving every developer permissions to deploy, you can give
solely the CI server those permissions (especially for the production
environment). It’s a lot easier to enforce good security practices for a
single server than it is to do for numerous developers with production
access.

Promotion across environments
If you’re using immutable infrastructure practices, the way to roll out new
changes is to promote the exact same versioned artifact from one
environment to another. For example, if you have dev, staging, and
production environments, to roll out v0.0.4 of your app, you would do
the following:

1. Deploy v0.0.4 of the app to dev.

2. Run your manual and automated tests in dev.

3. If v0.0.4 works well in dev, repeat steps 1 and 2 to deploy v0.0.4
to staging (this is known as promoting the artifact).

4. If v0.0.4 works well in staging, repeat steps 1 and 2 again to
promote v0.0.4 to prod.

Because you’re running the exact same artifact everywhere, there’s a good
chance that if it works in one environment, it will work in another. And if
you do hit any issues, you can roll back anytime by deploying an older
artifact version.

A Workflow for Deploying Infrastructure
Code
Now that you’ve seen the workflow for deploying application code, it’s
time to dive into the workflow for deploying infrastructure code. In this



section, when I say “infrastructure code,” I mean code written with any IaC
tool (including, of course, Terraform) that you can use to deploy arbitrary
infrastructure changes beyond a single application: for example, deploying
databases, load balancers, network configurations, DNS settings, and so on.

Here’s what the infrastructure code workflow looks like:

1. Use version control

2. Run the code locally

3. Make code changes

4. Submit changes for review

5. Run automated tests

6. Merge and release

7. Deploy

On the surface, it looks identical to the application workflow, but under the
hood, there are important differences. Deploying infrastructure code
changes is more complicated, and the techniques are not as well understood,
so being able to relate each step back to the analogous step from the
application code workflow should make it easier to follow along. Let’s dive
in.

Use Version Control
Just as with your application code, all of your infrastructure code should be
in version control. This means that you’ll use git clone to check out
your code, just as before. However, version control for infrastructure code
has a few extra requirements:

Live repo and modules repo

Golden Rule of Terraform

The trouble with branches



Live repo and modules repo
As discussed in Chapter 4, you will typically want at least two separate
version control repositories for your Terraform code: one repo for modules
and one repo for live infrastructure. The repository for modules is where
you create your reusable, versioned modules, such as all the modules you
built in the previous chapters of this book (cluster/asg-rolling-
deploy, data-stores/mysql, networking/alb, and
services/hello-world-app). The repository for live infrastructure
defines the live infrastructure you’ve deployed in each environment (dev,
stage, prod, etc.).

One pattern that works well is to have one infrastructure team in your
company that specializes in creating reusable, robust, production-grade
modules. This team can create remarkable leverage for your company by
building a library of modules that implement the ideas from Chapter 8; that
is, each module has a composable API, is thoroughly documented
(including executable documentation in the examples folder), has a
comprehensive suite of automated tests, is versioned, and implements all of
your company’s requirements from the production-grade infrastructure
checklist (i.e., security, compliance, scalability, high availability,
monitoring, and so on).

If you build such a library (or you buy one off the shelf ), all the other
teams at your company will be able to consume these modules, a bit like a
service catalog, to deploy and manage their own infrastructure, without (a)
each team having to spend months assembling that infrastructure from
scratch or (b) the Ops team becoming a bottleneck because it must deploy
and manage the infrastructure for every team. Instead, the Ops team can
spend most of its time writing infrastructure code, and all of the other teams
will be able to work independently, using these modules to get themselves
up and running. And because every team is using the same canonical
modules under the hood, as the company grows and requirements change,
the Ops team can push out new versions of the modules to all teams,
ensuring everything stays consistent and maintainable.

3



Or it will be maintainable, as long as you follow the Golden Rule of
Terraform.

The Golden Rule of Terraform
Here’s a quick way to check the health of your Terraform code: go into your
live repository, pick several folders at random, and run terraform plan
in each one. If the output is always “no changes,” that’s great, because it
means that your infrastructure code matches what’s actually deployed. If the
output sometimes shows a small diff, and you hear the occasional excuse
from your team members (“Oh, right, I tweaked that one thing by hand and
forgot to update the code”), your code doesn’t match reality, and you might
soon be in trouble. If terraform plan fails completely with weird
errors, or every plan shows a gigantic diff, your Terraform code has no
relation at all to reality and is likely useless.

The gold standard, or what you’re really aiming for, is what I call The
Golden Rule of Terraform:

The main branch of the live repository should be a 1:1 representation of
what’s actually deployed in production.

Let’s break this sentence down, starting at the end and working our way
back:

“…what’s actually deployed”

The only way to ensure that the Terraform code in the live repository is
an up-to-date representation of what’s actually deployed is to never
make out-of-band changes. After you begin using Terraform, do not
make changes via a web UI, or manual API calls, or any other
mechanism. As you saw in Chapter 5, out-of-band changes not only
lead to complicated bugs, but they also void many of the benefits you
get from using IaC in the first place.

“…a 1:1 representation…”



If I browse your live repository, I should be able to see, from a quick
scan, what resources have been deployed in what environments. That is,
every resource should have a 1:1 match with some line of code checked
into the live repo. This seems obvious at first glance, but it’s
surprisingly easy to get it wrong. One way to get it wrong, as I just
mentioned, is to make out-of-band changes so that the code is there, but
the live infrastructure is different. A more subtle way to get it wrong is
to use Terraform workspaces to manage environments so that the live
infrastructure is there, but the code isn’t. That is, if you use workspaces,
your live repo will have only one copy of the code, even though you
may have 3 or 30 environments deployed with it. From merely looking
at the code, there will be no way to know what’s actually deployed,
which will lead to mistakes and make maintenance complicated.
Therefore, as described in “Isolation via Workspaces”, instead of using
workspaces to manage environments, you want each environment
defined in a separate folder, using separate files, so that you can see
exactly what environments have been deployed just by browsing the
live repository. Later in this chapter, you’ll see how to do this with
minimal copying and pasting.

“The main branch…”

You should have to look at only a single branch to understand what’s
actually deployed in production. Typically, that branch will be main.
This means that all changes that affect the production environment
should go directly into main (you can create a separate branch but only
to create a pull request with the intention of merging that branch into
main), and you should run terraform apply only for the
production environment against the main branch. In the next section,
I’ll explain why.

The trouble with branches
In Chapter 3, you saw that you can use the locking mechanisms built into
Terraform backends to ensure that if two team members are running



terraform apply at the same time on the same set of Terraform
configurations, their changes do not overwrite each other. Unfortunately,
this only solves part of the problem. Even though Terraform backends
provide locking for Terraform state, they cannot help you with locking at
the level of the Terraform code itself. In particular, if two team members are
deploying the same code to the same environment but from different
branches, you’ll run into conflicts that locking can’t prevent.

For example, suppose that one of your team members, Anna, makes some
changes to the Terraform configurations for an app called “foo” that
consists of a single EC2 Instance:

resource "aws_instance" "foo" {
  ami           = data.aws_ami.ubuntu.id
  instance_type = "t2.micro"
}

The app is getting a lot of traffic, so Anna decides to change the
instance_type from t2.micro to t2.medium:

resource "aws_instance" "foo" {
  ami           = data.aws_ami.ubuntu.id
  instance_type = "t2.medium"
}

Here’s what Anna sees when she runs terraform plan:

$ terraform plan 
 
(...) 
 
Terraform will perform the following actions: 
 
  # aws_instance.foo will be updated in-place 
  ~ resource "aws_instance" "foo" { 
        ami                          = "ami-0fb653ca2d3203ac1" 
        id                           = "i-096430d595c80cb53" 
        instance_state               = "running" 
      ~ instance_type                = "t2.micro" -> "t2.medium" 
        (...) 
    } 



 
Plan: 0 to add, 1 to change, 0 to destroy.

Those changes look good, so she deploys them to staging.

In the meantime, Bill comes along and also starts making changes to the
Terraform configurations for the same app but on a different branch. All
Bill wants to do is to add a tag to the app:

resource "aws_instance" "foo" {
  ami           = data.aws_ami.ubuntu.id
  instance_type = "t2.micro" 
 
  tags = {
    Name = "foo" 
  }
}

Note that Anna’s changes are already deployed in staging, but because they
are on a different branch, Bill’s code still has the instance_type set to
the old value of t2.micro. Here’s what Bill sees when he runs the plan
command (the following log output is truncated for readability):

$ terraform plan 
 
(...) 
 
Terraform will perform the following actions: 
 
  # aws_instance.foo will be updated in-place 
  ~ resource "aws_instance" "foo" { 
        ami                          = "ami-0fb653ca2d3203ac1" 
        id                           = "i-096430d595c80cb53" 
        instance_state               = "running" 
      ~ instance_type                = "t2.medium" -> "t2.micro" 
      + tags                         = { 
          + "Name" = "foo" 
        } 
        (...) 
    } 
 
Plan: 0 to add, 1 to change, 0 to destroy.



Uh oh, he’s about to undo Anna’s instance_type change! If Anna is
still testing in staging, she’ll be very confused when the server suddenly
redeploys and starts behaving differently. The good news is that if Bill
diligently reads the plan output, he can spot the error before it affects
Anna. Nevertheless, the point of the example is to highlight what happens
when you deploy changes to a shared environment from different branches.

The locking from Terraform backends doesn’t help here, because the
conflict has nothing to do with concurrent modifications to the state file;
Bill and Anna might be applying their changes weeks apart, and the
problem would be the same. The underlying cause is that branching and
Terraform are a bad combination. Terraform is implicitly a mapping from
Terraform code to infrastructure deployed in the real world. Because there’s
only one real world, it doesn’t make much sense to have multiple branches
of your Terraform code. So for any shared environment (e.g., stage, prod),
always deploy from a single branch.

Run the Code Locally
Now that you’ve got the code checked out onto your computer, the next
step is to run it. The gotcha with Terraform is that, unlike application code,
you don’t have “localhost”; for example, you can’t deploy an AWS ASG
onto your own laptop. As discussed in “Manual Testing Basics”, the only
way to manually test Terraform code is to run it in a sandbox environment,
such as an AWS account dedicated for developers (or better yet, one AWS
account for each developer).

Once you have a sandbox environment, to test manually, you run
terraform apply:

$ terraform apply 
 
(...) 
 
Apply complete! Resources: 5 added, 0 changed, 0 destroyed. 
 
Outputs: 
 



alb_dns_name = "hello-world-stage-477699288.us-east-
2.elb.amazonaws.com"

And you verify the deployed infrastructure works by using tools such as
curl:

$ curl hello-world-stage-477699288.us-east-2.elb.amazonaws.com 
Hello, World

To run automated tests written in Go, you use go test in a sandbox
account dedicated to testing:

$ go test -v -timeout 30m 
 
(...) 
 
PASS 
ok   terraform-up-and-running 229.492s

Make Code Changes
Now that you can run your Terraform code, you can iteratively begin to
make changes, just as with application code. Every time you make a
change, you can rerun terraform apply to deploy those changes and
rerun curl to see whether those changes worked:

$ curl hello-world-stage-477699288.us-east-2.elb.amazonaws.com 
Hello, World v2

Or you can rerun go test to make sure the tests are still passing:

$ go test -v -timeout 30m 
 
(...) 
 
PASS 
ok   terraform-up-and-running 229.492s



The only difference from application code is that infrastructure code tests
typically take longer, so you’ll want to put more thought into how you can
shorten the test cycle so that you can get feedback on your changes as
quickly as possible. In “Test stages”, you saw that you can use these test
stages to rerun only specific stages of a test suite, dramatically shortening
the feedback loop.

As you make changes, be sure to regularly commit your work:

$ git commit -m "Updated Hello, World text"

Submit Changes for Review
After your code is working the way you expect, you can create a pull
request to get your code reviewed, just as you would with application code.
Your team will review your code changes, looking for bugs as well as
enforcing coding guidelines. Whenever you’re writing code as a team,
regardless of what type of code you’re writing, you should define
guidelines for everyone to follow. One of my favorite definitions of “clean
code” comes from an interview I did with Nick Dellamaggiore for my
earlier book, Hello, Startup:

If I look at a single file and it’s written by 10 different engineers, it should
be almost indistinguishable which part was written by which person. To
me, that is clean code.

The way you do that is through code reviews and publishing your style
guide, your patterns, and your language idioms. Once you learn them,
everybody is way more productive because you all know how to write
code the same way. At that point, it’s more about what you’re writing and
not how you write it.

—Nick Dellamaggiore, Infrastructure Lead at Coursera

The Terraform coding guidelines that make sense for each team will be
different, so here, I’ll list a few of the common ones that are useful for most
teams:

https://www.hello-startup.net/


Documentation

Automated tests

File layout

Style guide

Documentation
In some sense, Terraform code is, in and of itself, a form of documentation.
It describes in a simple language exactly what infrastructure you deployed
and how that infrastructure is configured. However, there is no such thing
as self-documenting code. Although well-written code can tell you what it
does, no programming language that I’m aware of (including Terraform)
can tell you why it does it.

This is why all software, including IaC, needs documentation beyond the
code itself. There are several types of documentation that you can consider
and have your team members require as part of code reviews:

Written documentation

Most Terraform modules should have a README that explains what
the module does, why it exists, how to use it, and how to modify it. In
fact, you may want to write the README first, before any of the actual
Terraform code, because that will force you to consider what you’re
building and why you’re building it before you dive into the code and
get lost in the details of how to build it.  Spending 20 minutes writing a
README can often save you hours of writing code that solves the
wrong problem. Beyond the basic README, you might also want to
have tutorials, API documentation, wiki pages, and design documents
that go deeper into how the code works and why it was built this way.

Code documentation

Within the code itself, you can use comments as a form of
documentation. Terraform treats any text that begins with a hash (#) as a
comment. Don’t use comments to explain what the code does; the code
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should do that itself. Only include comments to offer information that
can’t be expressed in code, such as how the code is meant to be used or
why the code uses a particular design choice. Terraform also allows
every input and output variable to declare a description parameter,
which is a great place to describe how that variable should be used.

Example code

As discussed in Chapter 8, every Terraform module should include
example code that shows how that module is meant to be used. This is a
great way to highlight the intended usage patterns and give your users a
way to try your module without having to write any code, and it’s the
main way to add automated tests for the module.

Automated tests
All of Chapter 9 focuses on testing Terraform code, so I won’t repeat any of
that here, other than to say that infrastructure code without tests is broken.
Therefore, one of the most important comments you can make in any code
review is “How did you test this?”

File layout
Your team should define conventions for where Terraform code is stored
and the file layout you use. Because the file layout for Terraform also
determines the way Terraform state is stored, you should be especially
mindful of how file layout affects your ability to provide isolation
guarantees, such as ensuring that changes in a staging environment cannot
accidentally cause problems in production. In a code review, you might
want to enforce the file layout described in “Isolation via File Layout”,
which provides isolation between different environments (e.g., stage and
prod) and different components (e.g., a network topology for the entire
environment and a single app within that environment).

Style guide



Every team should enforce a set of conventions about code style, including
the use of whitespace, newlines, indentation, curly braces, variable naming,
and so on. Although programmers love to debate spaces versus tabs and
where the curly brace should go, the more important thing is that you are
consistent throughout your codebase.

Terraform has a built-in fmt command that can reformat code to a
consistent style automatically:

$ terraform fmt

I recommend running this command as part of a commit hook to ensure that
all code committed to version control uses a consistent style.

Run Automated Tests
Just as with application code, your infrastructure code should have commit
hooks that kick off automated tests in a CI server after every commit and
show the results of those tests in the pull request. You already saw how to
write unit tests, integration tests, and end-to-end tests for your Terraform
code in Chapter 9. There’s one other critical type of test you should run:
terraform plan. The rule here is simple:

Always run plan before apply.

Terraform shows the plan output automatically when you run apply, so
what this rule really means is that you should always pause and read the
plan output! You’d be amazed at the type of errors you can catch by
taking 30 seconds to scan the “diff” you get as an output. A great way to
encourage this behavior is by integrating plan into your code review flow.
For example, Atlantis is an open source tool that automatically runs
terraform plan on commits and adds the plan output to pull requests
as a comment, as shown in Figure 10-3.

https://www.runatlantis.io/




Figure 10-3. Atlantis can automatically add the output of the terraform plan command as a
comment on your pull requests.

Terraform Cloud and Terraform Enterprise, HashiCorp’s paid tools, both
support running plan automatically on pull requests as well.

Merge and Release
After your team members have had a chance to review the code changes
and plan output and all the tests have passed, you can merge your changes
into the main branch and release the code. Similar to application code, you
can use Git tags to create a versioned release:

$ git tag -a "v0.0.6" -m "Updated hello-world-example text" 
$ git push --follow-tags

Whereas with application code, you often have a separate artifact to deploy,
such as a Docker image or VM image, since Terraform natively supports
downloading code from Git, the repository at a specific tag is the
immutable, versioned artifact you will be deploying.

Deploy
Now that you have an immutable, versioned artifact, it’s time to deploy it.
Here are a few of the key considerations for deploying Terraform code:

Deployment tooling

Deployment strategies

Deployment server

Promote artifacts across environments

Deployment tooling
When deploying Terraform code, Terraform itself is the main tool that you
use. However, there are a few other tools that you might find useful:



Atlantis

The open source tool you saw earlier can not only add the plan output
to your pull requests but also allows you to trigger a terraform
apply when you add a special comment to your pull request. Although
this provides a convenient web interface for Terraform deployments, be
aware that it doesn’t support versioning, which can make maintenance
and debugging for larger projects more difficult.

Terraform Cloud and Terraform Enterprise

HashiCorp’s paid products provide a web UI that you can use to run
terraform plan and terraform apply as well as manage
variables, secrets, and access permissions.

Terragrunt

This is an open source wrapper for Terraform that fills in some gaps in
Terraform. You’ll see how to use it a bit later in this chapter to deploy
versioned Terraform code across multiple environments with minimal
copying and pasting.

Scripts

As always, you can write scripts in a general-purpose programming
language such as Python or Ruby or Bash to customize how you use
Terraform.

Deployment strategies
For most types of infrastructure changes, Terraform doesn’t offer any built-
in deployment strategies: for example, there’s no way to do a blue-green
deployment for a VPC change, and there’s no way to feature toggle a
database change. You’re essentially limited to terraform apply, which
either works or it doesn’t. A small subset of changes do support deployment
strategies, such as the zero-downtime rolling deployment in the asg-



rolling-deploy module you built in previous chapters, but these are
the exceptions and not the norm.

Due to these limitations, it’s critical to take into account what happens when
a deployment goes wrong. With an application deployment, many types of
errors are caught by the deployment strategy; for example, if the app fails to
pass health checks, the load balancer will never send it live traffic, so users
won’t be affected. Moreover, the rolling deployment or blue-green
deployment strategy can automatically roll back to the previous version of
the app in case of errors.

Terraform, on the other hand, does not roll back automatically in case of
errors. In part, that’s because there is no reasonable way to roll back many
types of infrastructure changes: for example, if an app deployment failed,
it’s almost always safe to roll back to an older version of the app, but if the
Terraform change you were deploying failed, and that change was to delete
a database or terminate a server, you can’t easily roll that back!

Therefore, you should expect errors to happen and ensure you have a first-
class way to deal with them:

Retries

Certain types of Terraform errors are transient and go away if you rerun
terraform apply. The deployment tooling you use with Terraform
should detect these known errors and automatically retry after a brief
pause. Terragrunt has automatic retries on known errors as a built-in
feature.

Terraform state errors

Occasionally, Terraform will fail to save state after running
terraform apply. For example, if you lose internet connectivity
partway through an apply, not only will the apply fail, but Terraform
won’t be able to write the updated state file to your remote backend
(e.g., to Amazon S3). In these cases, Terraform will save the state file
on disk in a file called errored.tfstate. Make sure that your CI server
does not delete these files (e.g., as part of cleaning up the workspace

https://oreil.ly/0OWis


after a build)! If you can still access this file after a failed deployment,
as soon as internet connectivity is restored, you can push this file to
your remote backend (e.g., to S3) using the state push command so
that the state information isn’t lost:

$ terraform state push errored.tfstate

Errors releasing locks

Occasionally, Terraform will fail to release a lock. For example, if your
CI server crashes in the middle of a terraform apply, the state
will remain permanently locked. Anyone else who tries to run apply
on the same module will get an error message saying the state is locked
and showing the ID of the lock. If you’re absolutely sure this is an
accidentally leftover lock, you can forcibly release it using the force-
unlock command, passing it the ID of the lock from that error
message:

$ terraform force-unlock <LOCK_ID>

Deployment server
Just as with your application code, all of your infrastructure code changes
should be applied from a CI server and not from a developer’s computer.
You can run terraform from Jenkins, CircleCI, GitHub Actions,
Terraform Cloud, Terraform Enterprise, Atlantis, or any other reasonably
secure automated platform. This gives you the same benefits as with
application code: it forces you to fully automate your deployment process,
it ensures deployment always happens from a consistent environment, and it
gives you better control over who has permissions to access production
environments.

That said, permissions to deploy infrastructure code are quite a bit trickier
than for application code. With application code, you can usually give your



CI server a minimal, fixed set of permissions to deploy your apps; for
example, to deploy to an ASG, the CI server typically needs only a few
specific ec2 and autoscaling permissions. However, to be able to
deploy arbitrary infrastructure code changes (e.g., your Terraform code
might try to deploy a database or a VPC or an entirely new AWS account),
the CI server needs arbitrary permissions—that is, admin permissions. And
that’s a problem.

The reason it’s a problem is that CI servers are (a) notoriously hard to
secure,  (b) accessible to all the developers at your company, and (c) used
to execute arbitrary code. Adding permanent admin permissions to this mix
is just asking for trouble! You’d effectively be giving every single person
on your team admin permissions and turning your CI server into a very
high-value target for attackers.

There are a few things you can do to minimize this risk:

Lock the CI server down

Make it accessible solely over HTTPs, require all users to be
authenticated, and follow server-hardening practices (e.g., lock down
the firewall, install fail2ban, enable audit logging, etc.).

Don’t expose your CI server on the public internet

That is, run the CI server in private subnets, without any public IP, so
that it’s accessible only over a VPN connection. That way, only users
with valid network access (e.g., via a VPN certificate) can access your
CI server at all. Note that this does have a drawback: webhooks from
external systems won’t work. For example, GitHub won’t automatically
be able to trigger builds in your CI server; instead, you’ll need to
configure your CI server to poll your version control system for
updates. This is a small price to pay for a significantly more secure CI
server.

Enforce an approval workflow
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Configure your CI/CD pipeline to require that every deployment be
approved by at least one person (other than the person who requested
the deployment in the first place). During this approval step, the
reviewer should be able to see both the code changes and the plan
output, as one final check that things look OK before apply runs. This
ensures that every deployment, code change, and plan output has had
at least two sets of eyes on it.

Don’t give the CI server permanent credentials

As you saw in Chapter 6, instead of manually managed, permanent
credentials (e.g., AWS access keys copy/pasted into your CI server),
you should prefer to use authentication mechanisms that use temporary
credentials, such as IAM roles and OIDC.

Don’t give the CI server admin credentials

Instead, isolate the admin credentials to a totally separate, isolated
worker: e.g., a separate server, a separate container, etc. That worker
should be extremely locked down, so no developers have access to it at
all, and the only thing it allows is for the CI server to trigger that worker
via an extremely limited remote API. For example, that worker’s API
may only allow you to run specific commands (e.g., terraform
plan and terraform apply), in specific repos (e.g., your live
repo), in specific branches (e.g., the main branch), and so on. This way,
even if an attacker gets access to your CI server, they still won’t have
access to the admin credentials, and all they can do is request a
deployment on some code that’s already in your version control system,
which isn’t nearly as much of a catastrophe as leaking the admin
credentials fully.

Promote artifacts across environments
Just as with application artifacts, you’ll want to promote your immutable,
versioned infrastructure artifacts from environment to environment: for
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example, promote v0.0.6 from dev to stage to prod.  The rule here is also
simple:

Always test Terraform changes in pre-prod before prod.

Because everything is automated with Terraform anyway, it doesn’t cost
you much extra effort to try a change in staging before production, but it
will catch a huge number of errors. Testing in pre-prod is especially
important because, as mentioned earlier in this chapter, Terraform does not
roll back changes in case of errors. If you run terraform apply and
something goes wrong, you must fix it yourself. This is easier and less
stressful to do if you catch the error in a pre-prod environment rather than
prod.

The process for promoting Terraform code across environments is similar to
the process of promoting application artifacts, except there is an extra
approval step, as mentioned in the previous section, where you run
terraform plan and have someone manually review the output and
approve the deployment. This step isn’t usually necessary for application
deployments, as most application deployments are similar and relatively
low risk. However, every infrastructure deployment can be completely
different, and mistakes can be very costly (e.g., deleting a database), so
having one last chance to look at the plan output and review it is well
worth the time.

Here’s what the process looks like for promoting, for instance, v0.0.6 of
a Terraform module across the dev, stage, and prod environments:

1. Update the dev environment to v0.0.6, and run terraform
plan.

2. Prompt someone to review and approve the plan; for example, send an
automated message via Slack.

3. If the plan is approved, deploy v0.0.6 to dev by running
terraform apply.

4. Run your manual and automated tests in dev.
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5. If v0.0.6 works well in dev, repeat steps 1–4 to promote v0.0.6 to
staging.

6. If v0.0.6 works well in staging, repeat steps 1–4 again to promote
v0.0.6 to production.

One important issue to deal with is all the code duplication between
environments in the live repo. For example, consider the live repo shown in
Figure 10-4.





Figure 10-4. File layout with a large number of copy/pasted environments and modules within each
environment.

This live repo has a large number of regions, and within each region, a large
number of modules, most of which are copied and pasted. Sure, each
module has a main.tf that references a module in your modules repo, so it’s
not as much copying and pasting as it could be, but even if all you’re doing
is instantiating a single module, there is still a large amount of boilerplate
that needs to be duplicated between each environment:

The provider configuration

The backend configuration

The input variables to pass to the module

The output variables to proxy from the module

This can add up to dozens or hundreds of lines of mostly identical code in
each module, copied and pasted into each environment. To make this code
more DRY, and to make it easier to promote Terraform code across
environments, you can use the open source tool I’ve mentioned earlier
called Terragrunt. Terragrunt is a thin wrapper for Terraform, which means
that you run all of the standard terraform commands, except you use
terragrunt as the binary:

$ terragrunt plan 
$ terragrunt apply 
$ terragrunt output

Terragrunt will run Terraform with the command you specify, but based on
configuration you specify in a terragrunt.hcl file, you can get some extra
behavior. In particular, Terragrunt allows you to define all of your
Terraform code exactly once in the modules repo, whereas in the live repo,
you will have solely terragrunt.hcl files that provide a DRY way to
configure and deploy each module in each environment. This will result in a
live repo with far fewer files and lines of code, as shown in Figure 10-5.



To get started, install Terragrunt by following the instructions on the
Terragrunt website. Next, add a provider configuration to modules/data-
stores/mysql/main.tf and modules/services/hello-world-app/main.tf:

provider "aws" {
  region = "us-east-2"
}

https://oreil.ly/L7IaY




Figure 10-5. Use Terragrunt in your live repos to reduce the amount of code duplication.

Commit these changes and release a new version of your modules repo:

$ git add modules/data-stores/mysql/main.tf 
$ git add modules/services/hello-world-app/main.tf 
$ git commit -m "Update mysql and hello-world-app for Terragrunt" 
$ git tag -a "v0.0.7" -m "Update Hello, World text" 
$ git push --follow-tags

Now, head over to the live repo, and delete all the .tf files. You’re going to
replace all that copied and pasted Terraform code with a single
terragrunt.hcl file for each module. For example, here’s terragrunt.hcl for
live/stage/data-stores/mysql/terragrunt.hcl:

terraform {
  source = "github.com/<OWNER>/modules//data-stores/mysql?
ref=v0.0.7"
} 
 
inputs = {
  db_name = "example_stage" 
 
  # Set the username using the TF_VAR_db_username environment 
variable
  # Set the password using the TF_VAR_db_password environment 
variable
}

As you can see, terragrunt.hcl files use the same HashiCorp Configuration
Language (HCL) syntax as Terraform itself. When you run terragrunt
apply and it finds the source parameter in a terragrunt.hcl file,
Terragrunt will do the following:

1. Check out the URL specified in source to a temporary folder. This
supports the same URL syntax as the source parameter of Terraform
modules, so you can use local file paths, Git URLs, versioned Git
URLs (with a ref parameter, as in the preceding example), and so on.



2. Run terraform apply in the temporary folder, passing it the input
variables that you’ve specified in the inputs = { … } block.

The benefit of this approach is that the code in the live repo is reduced to
just a single terragrunt.hcl file per module, which contains only a pointer to
the module to use (at a specific version), plus the input variables to set for
that specific environment. That’s about as DRY as you can get.

Terragrunt also helps you keep your backend configuration DRY. Instead
of having to define the bucket, key, dynamodb_table, and so on in
every single module, you can define it in a single terragrunt.hcl file per
environment. For example, create the following in live/stage/terragrunt.hcl:

remote_state {
  backend = "s3" 
 
  generate = {
    path      = "backend.tf"
    if_exists = "overwrite" 
  } 
 
  config = {
    bucket         = "<YOUR BUCKET>"
    key            = 
"${path_relative_to_include()}/terraform.tfstate"
    region         = "us-east-2"
    encrypt        = true
    dynamodb_table = "<YOUR_TABLE>" 
  }
}

From this one remote_state block, Terragrunt can generate the
backend configuration dynamically for each of your modules, writing the
configuration in config to the file specified via the generate param.
Note that the key value in config uses a Terragrunt built-in function
called path_relative_to_include(), which will return the relative
path between this root terragrunt.hcl file and any child module that
includes it. For example, to include this root file in live/stage/data-
stores/mysql/terragrunt.hcl, add an include block:



terraform {
  source = "github.com/<OWNER>/modules//data-stores/mysql?
ref=v0.0.7"
} 
 
include {
  path = find_in_parent_folders()
} 
 
inputs = {
  db_name = "example_stage" 
 
  # Set the username using the TF_VAR_db_username environment 
variable
  # Set the password using the TF_VAR_db_password environment 
variable
}

The include block finds the root terragrunt.hcl using the Terragrunt
built-in function find_in_parent_folders(), automatically
inheriting all the settings from that parent file, including the
remote_state configuration. The result is that this mysql module will
use all the same backend settings as the root file, and the key value will
automatically resolve to data-stores/mysql/terraform.tfstate. This means
that your Terraform state will be stored in the same folder structure as your
live repo, which will make it easy to know which module produced which
state files.

To deploy this module, run terragrunt apply:

$ terragrunt apply --terragrunt-log-level debug 
DEBU[0001] Reading Terragrunt config file at terragrunt.hcl 
DEBU[0001] Included config live/stage/terragrunt.hcl 
DEBU[0001] Downloading Terraform configurations into .terragrunt-
cache 
DEBU[0001] Generated file backend.tf 
DEBU[0013] Running command: terraform init 
 
(...) 
 
Initializing the backend... 
 
Successfully configured the backend "s3"! Terraform will 



automatically 
use this backend unless the backend configuration changes. 
 
(...) 
 
DEBU[0024] Running command: terraform apply 
 
(...) 
 
Terraform will perform the following actions: 
 
(...) 
 
Plan: 5 to add, 0 to change, 0 to destroy. 
 
Do you want to perform these actions? 
  Terraform will perform the actions described above. 
  Only 'yes' will be accepted to approve. 
 
  Enter a value: yes 
 
(...) 
 
Apply complete! Resources: 5 added, 0 changed, 0 destroyed.

Normally, Terragrunt only shows the log output from Terraform itself, but
as I included --terragrunt-log-level debug, the preceding
output shows what Terragrunt does under the hood:

1. Read the terragrunt.hcl file in the mysql folder where you ran apply.

2. Pull in all the settings from the included root terragrunt.hcl file.

3. Download the Terraform code specified in the source URL into the
.terragrunt-cache scratch folder.

4. Generate a backend.tf file with your backend configuration.

5. Detect that init has not been run and run it automatically (Terragrunt
will even create your S3 bucket and DynamoDB table automatically if
they don’t already exist).

6. Run apply to deploy changes.



Not bad for a couple of tiny terragrunt.hcl files!

You can now deploy the hello-world-app module in staging by
adding live/stage/services/hello-world-app/terragrunt.hcl and running
terragrunt apply:

terraform {
  source = "github.com/<OWNER>/modules//services/hello-world-app?
ref=v0.0.7"
} 
 
include {
  path = find_in_parent_folders()
} 
 
dependency "mysql" {
  config_path = "../../data-stores/mysql"
} 
 
inputs = {
  environment = "stage"
  ami         = "ami-0fb653ca2d3203ac1" 
 
  min_size = 2
  max_size = 2 
 
  enable_autoscaling = false 
 
  mysql_config = dependency.mysql.outputs
}

This terragrunt.hcl file uses the source URL and inputs just as you
saw before and uses include to pull in the settings from the root
terragrunt.hcl file, so it will inherit the same backend settings, except for
the key, which will be automatically set to services/hello-world-
app/terraform.tfstate, just as you’d expect. The one new thing in this
terragrunt.hcl file is the dependency block:

dependency "mysql" {
  config_path = "../../data-stores/mysql"
}



This is a Terragrunt feature that can be used to automatically read the output
variables of another Terragrunt module, so you can pass them as input
variables to the current module, as follows:

  mysql_config = dependency.mysql.outputs

In other words, dependency blocks are an alternative to using
terraform_remote_state data sources to pass data between
modules. While terraform_remote_state data sources have the
advantage of being native to Terraform, the drawback is that they make
your modules more tightly coupled together, as each module needs to know
how other modules store state. Using Terragrunt dependency blocks
allows your modules to expose generic inputs like mysql_config and
vpc_id, instead of using data sources, which makes the modules less
tightly coupled and easier to test and reuse.

Once you’ve got hello-world-app working in staging, create
analogous terragrunt.hcl files in live/prod and promote the exact same
v0.0.7 artifact to production by running terragrunt apply in each
module.

Putting It All Together
You’ve now seen how to take both application code and infrastructure code
from development all the way through to production. Table 10-1 shows an
overview of the two workflows side by side.



Table 10-1. Application and infrastructure code workflows

Application code Infrastructure code

Use version control git clone

One repo per app

Use branches

git clone

live and modules repos

Don’t use branches

Run the code
locally

Run on localhost

ruby web-serv
er.rb

ruby web-serv
er-test.rb

Run in a sandbox environment

terraform apply

go test

Make code changes Change the code

ruby web-serv
er.rb

ruby web-serv
er-test.rb

Change the code

terraform apply

go test

Use test stages

Submit changes for
review

Submit a pull
request

Enforce coding
guidelines

Submit a pull request

Enforce coding guidelines

Run automated
tests

Tests run on CI
server

Unit tests

Integration tests

End-to-end tests

Static analysis

Tests run on CI server

Unit tests

Integration tests

End-to-end tests

Static analysis

terraform plan



Application code Infrastructure code

Merge and release git tag

Create versioned,
immutable artifact

git tag

Use repo with tag as versioned, immutable
artifact

Deploy Deploy with
Terraform,
orchestration tool
(e.g., Kubernetes,
Mesos), scripts

Many deployment
strategies: rolling
deployment, blue-
green, canary

Run deployment on
a CI server

Give CI server
limited permissions

Promote
immutable,
versioned artifacts
across
environments

Once a pull request
is merged, deploy
automatically

Deploy with Terraform, Atlantis, Terraform
Cloud, Terraform Enterprise, Terragrunt,
scripts

Limited deployment strategies (make sure to
handle errors: retries,
errored.tfstate!)

Run deployment on a CI server

Give CI server temporary credentials solely
to invoke a separate, locked-down worker
that has admin permissions

Promote immutable, versioned artifacts
across environments

Once a pull request is merged, go through
an approval workflow where someone
checks the plan output one last time, and
then deploy automatically

If you follow this process, you will be able to run application and
infrastructure code in dev, test it, review it, package it into versioned,
immutable artifacts, and promote those artifacts from environment to
environment, as shown in Figure 10-6.





Figure 10-6. Promoting an immutable, versioned artifact of Terraform code from environment to
environment.

Conclusion
If you’ve made it to this point in the book, you now know just about
everything you need to use Terraform in the real world, including how to
write Terraform code; how to manage Terraform state; how to create
reusable modules with Terraform; how to do loops, if-statements, and
deployments; how to manage secrets; how to work with multiple regions,
accounts, and clouds; how to write production-grade Terraform code; how
to test your Terraform code; and how to use Terraform as a team. You’ve
worked through examples of deploying and managing servers, clusters of
servers, load balancers, databases, scheduled actions, CloudWatch alarms,
IAM users, reusable modules, zero-downtime deployment, AWS Secrets
Manager, Kubernetes clusters, automated tests, and more. Phew! Just don’t
forget to run terraform destroy in each module when you’re all
done.

The power of Terraform, and more generally, IaC, is that you can manage
all the operational concerns around an application using the same coding
principles as the application itself. This allows you to apply the full power
of software engineering to your infrastructure, including modules, code
reviews, version control, and automated testing.

If you use Terraform correctly, your team will be able to deploy faster and
respond to changes more quickly. Hopefully, deployments will become
routine and boring—and in the world of operations, boring is a very good
thing. And if you really do your job right, rather than spending all your time
managing infrastructure by hand, your team will be able to spend more and
more time improving that infrastructure, allowing you to go even faster.

This is the end of the book but just the beginning of your journey with
Terraform. To learn more about Terraform, IaC, and DevOps, head over to
Appendix A for a list of recommended reading. And if you’ve got feedback



or questions, I’d love to hear from you at jim@ybrikman.com. Thank you
for reading!

1  The Standish Group, “CHAOS Manifesto 2013: Think Big, Act Small,” 2013,
https://oreil.ly/ydaWQ.

2  Dan Milstein, “How to Survive a Ground-Up Rewrite Without Losing Your Sanity,”
OnStartups.com, April 8, 2013, https://oreil.ly/nOGrU.

3  See the Gruntwork Infrastructure as Code Library.

4  Writing the README first is called Readme-Driven Development.

5  See 10 real-world stories of how we’ve compromised CI/CD pipelines for some eye-opening
examples.

6  Check out Gruntwork Pipelines for a real-world example of this worker pattern.

7  Credit for how to promote Terraform code across environments goes to Kief Morris: Using
Pipelines to Manage Environments with Infrastructure as Code.

mailto:jim@ybrikman.com
https://oreil.ly/ydaWQ
https://oreil.ly/nOGrU
https://oreil.ly/T7m32
https://bit.ly/1p8QBor
https://oreil.ly/Z7R5M
https://gruntwork.io/pipelines
https://bit.ly/2lJmus8


Appendix A. Recommended
Reading

The following are some of the best resources I’ve found on DevOps and
infrastructure as code, including books, blog posts, newsletters, and talks.

Books
Infrastructure as Code: Dynamic Systems for the Cloud Age by Kief
Morris (O’Reilly)

Site Reliability Engineering: How Google Runs Production Systems by
Betsy Beyer, Chris Jones, Jennifer Petoff, and Niall Richard Murphy
(O’Reilly)

The DevOps Handbook: How To Create World-Class Agility,
Reliability, and Security in Technology Organizations by Gene Kim,
Jez Humble, Patrick Debois, and John Willis (IT Revolution Press)

Designing Data-Intensive Applications by Martin Kleppmann
(O’Reilly)

Continuous Delivery: Reliable Software Releases through Build, Test,
and Deployment Automation by Jez Humble and David Farley
(Addison-Wesley Professional)

Release It! Design and Deploy Production-Ready Software by Michael
T. Nygard (The Pragmatic Bookshelf)

Kubernetes in Action by Marko Luksa (Manning)

Leading the Transformation: Applying Agile and DevOps Principles at
Scale by Gary Gruver and Tommy Mouser (IT Revolution Press)

https://learning.oreilly.com/library/view/infrastructure-as-code/9781098114664/
https://learning.oreilly.com/library/view/site-reliability-engineering/9781491929117/
https://learning.oreilly.com/library/view/designing-data-intensive-applications/9781491903063/


Visible Ops Handbook by Kevin Behr, Gene Kim, and George
Spafford (Information Technology Process Institute)

Effective DevOps by Jennifer Davis and Ryn Daniels (O’Reilly)

Lean Enterprise by Jez Humble, Joanne Molesky, Barry O’Reilly
(O’Reilly)

Hello, Startup: A Programmer’s Guide to Building Products,
Technologies, and Teams by Yevgeniy Brikman (O’Reilly)

Blogs
High Scalability

Code as Craft

AWS News Blog

Kitchen Soap

Paul Hammant’s blog

Martin Fowler’s blog

Gruntwork Blog

Yevgeniy Brikman blog

Talks
“Reusable, Composable, Battle-Tested Terraform Modules” by
Yevgeniy Brikman

“5 Lessons Learned from Writing Over 300,000 Lines of Infrastructure
Code” by Yevgeniy Brikman

“Automated Testing for Terraform, Docker, Packer, Kubernetes, and
More” by Yevgeniy Brikman

https://learning.oreilly.com/library/view/effective-devops/9781491926291/
https://learning.oreilly.com/library/view/lean-enterprise/9781491946527/
https://learning.oreilly.com/library/view/hello-startup/9781491910016/
https://highscalability.com/
https://codeascraft.com/
https://aws.amazon.com/blogs/aws
https://www.kitchensoap.com/
https://paulhammant.com/
https://martinfowler.com/bliki
https://blog.gruntwork.io/
https://www.ybrikman.com/writing
https://bit.ly/32b28JD
https://bit.ly/2ZCcEfi
https://oreil.ly/6GoG1


“Infrastructure as Code: Running Microservices on AWS using
Docker, Terraform, and ECS” by Yevgeniy Brikman

“Agility Requires Safety” by Yevgeniy Brikman

“Adopting Continuous Delivery” by Jez Humble

“Continuously Deploying Culture” by Michael Rembetsy and Patrick
McDonnell

“10+ Deploys Per Day: Dev and Ops Cooperation at Flickr” by John
Allspaw and Paul Hammond

“Why Google Stores Billions of Lines of Code in a Single Repository”
by Rachel Potvin

“The Language of the System” by Rich Hickey

“Real Software Engineering” by Glenn Vanderburg

Newsletters
DevOps Weekly

Gruntwork Newsletter

Terraform: Up & Running Newsletter

Terraform Weekly Newsletter

Online Forums
Terraform subforum of HashiCorp Discuss

Terraform subreddit

DevOps subreddit

https://bit.ly/30TYaVu
https://bit.ly/2YJuqJb
https://oreil.ly/ObdAu
https://vimeo.com/51310058
https://youtu.be/LdOe18KhtT4
https://youtu.be/W71BTkUbdqE
https://youtu.be/ROor6_NGIWU
https://youtu.be/NP9AIUT9nos
https://www.devopsweekly.com/
https://www.gruntwork.io/newsletter
https://bit.ly/32dnRAW
https://weekly.tf/
https://oreil.ly/5mGzF
https://oreil.ly/RqIhJ
https://www.reddit.com/r/devops
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